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We investigated how the human brain integrates experiences of specific events to build general knowledge about typical event structure.
We examined an episodic memory area important for temporal relations, anterior-lateral entorhinal cortex, and a semantic memory
area important for action concepts, middle temporal gyrus, to understand how and when these areas contribute to these processes.
Participants underwent functional magnetic resonance imaging while learning and recalling temporal relations among novel events
over two sessions 1 week apart. Across distinct contexts, individual temporal relations among events could either be consistent or
inconsistent with each other. Within each context, during the recall phase, we measured associative coding as the difference of
multivoxel correlations among related vs unrelated pairs of events. Neural regions that form integrative representations should exhibit
stronger associative coding in the consistent than the inconsistent contexts. We found evidence of integrative representations that
emerged quickly in anterior-lateral entorhinal cortex (at session 1), and only subsequently in middle temporal gyrus, which showed a
significant change across sessions. A complementary pattern of findings was seen with signatures during learning. This suggests that
integrative representations are established early in anterior-lateral entorhinal cortex and may be a pathway to the later emergence of
semantic knowledge in middle temporal gyrus.

Key words: fMRI; semantic memory; learning; medial temporal lobe; middle temporal gyrus; temporal relations; event cognition;
relational memory.

Introduction
We use experiences of specific events to build general knowledge
about typical event structure. For example, by integrating across
multiple instances of making coffee, throwing a ball, or going to
a restaurant, we come to know the typical components of these
events and their typical temporal relations. To recognize common
event structure across instances, we must integrate information
across diverse experiences and contexts: making coffee with dif-
ferent methods or ordering in restaurants that differ in taste
and décor. The complementary learning systems (CLS) theory
(McClelland et al. 1995; Norman and O’Reilly 2003) proposes that
two distinct systems are involved: an episodic system that rapidly
encodes recent experiences and a semantic system that learns
more gradually. However, exactly when and where integration
takes place remains less well understood.

The hippocampus (HC) is a critical part of the episodic system.
It rapidly binds together the temporal and spatial aspects of
specific experiences (Sutherland and Rudy 1989; Mishkin 1997;
Eichenbaum and Cohen 2001; O’Reilly and Rudy 2001; Eichen-
baum 2004; Ranganath 2010; Ranganath and Hsieh 2016) but
is less critical for longer ago learned information (Hodges and
McCarthy 1995; Levy et al. 2004; Maviel et al. 2004; Frankland
and Bontempi 2005; Tse et al. 2007; Wang et al. 2009; Winocur
et al. 2010; Lesburguères et al. 2011). It also has a role in some
aspects of integration: prior work has shown that the ability to
link separately presented stimulus pairs that share a common
item, e.g. AB and BC, is critically reliant on an intact HC (Bunsey
and Eichenbaum 1996; Dusek and Eichenbaum 1997), is correlated

with HC engagement during learning (Shohamy and Wagner 2008;
Kuhl et al. 2010; Zeithamova and Preston 2010; Wimmer and
Shohamy 2012; Zeithamova et al. 2012; Schlichting and Preston
2016; Tompary and Davachi 2017; Barron et al. 2020), and can
result in integrative representations linking A and C (Collin et al.
2015; Schlichting et al. 2015; Tompary and Davachi 2017). How-
ever, HC is also known to pattern-separate information associated
with distinct contexts (Winocur et al. 2010; Dimsdale-Zucker et al.
2018; Pacheco Estefan et al. 2019; Zheng et al. 2021) and its
integrative representations are not typically expected to persist
in time.

In contrast, semantic knowledge about long-learned, familiar
actions and events, such as the categories throwing or making
coffee, particularly relies on areas in lateral posterior temporal
cortex surrounding the middle temporal gyrus (MTG; Bedny et al.
2008; Bedny et al. 2011; Bedny et al. 2013; Bottini et al. 2020; Kable
et al. 2005; Leshinskaya and Thompson-Schill 2020; Tarhan et al.
2016; Tranel et al. 2003; Wurm and Caramazza 2021) It is not
likely that all of the reviewed effects are in the same functional
area, but the broader region can be thought of as a mosaic of
highly related functions (see Leshinskaya et al. 2020 for a review).
However, little work has examined how representations in MTG
are learned or updated with experience. Our prior findings have
revealed that MTG represents novel temporal relations learned a
week prior (Leshinskaya and Thompson-Schill 2020) but we know
little about the mechanisms by which it comes to do so, includ-
ing when integrated representations begin to form. Cognitively,
event and action concepts rely on an understanding of shared
relational structure (Miller and Johnson-Laird 1976; Gentner 1983;
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Pinker 1989; Markman and Gentner 1993; Markman and Stilwell
2001; Rehder and Ross 2001; Jones and Love 2007; Carey 2009),
which offers the hypothesis that relation learning mechanisms
in the episodic system are critical to their formation. Yet, in
between episodic and semantic relational representations is a
large empirical gap.

Here, we consider the possibility that this gap is mediated
by the contribution of anterior-lateral entorhinal cortex (alEC).
Entorhinal cortex (EC) mediates the major efferent and afferent
pathways between HC and cortex (Burwell et al. 1995; Suzuki
1996) but is traditionally depicted as a simple conduit. How-
ever, these connections are essential for temporal associative
learning (Suh et al. 2011; Kitamura et al. 2014) and increasing
evidence reveals recurrent processing between EC and HC and
its likely role in forming stable and generalizable memory traces
across diverse experiences (Behrens et al. 2018; Boccara et al.
2019; Baram et al. 2021; Gerlei et al. 2021; Park et al. 2021a).
A number of considerations suggest that EC is also more likely
to hold integrative mnemonic information than HC (Kumaran
and McClelland 2012; Kitamura et al. 2014; Koster et al. 2018).
However, its role in integrative and semantic learning, particularly
across time, remains poorly investigated. Recent work has also
suggested that EC is composed of anatomically and function-
ally distinct sub-regions, posterior-medial (pmEC) and anterior-
lateral (alEC) portions, with the latter specialized for temporal and
object-related information (Schröder et al. 2015; Tsao et al. 2018;
Bellmund et al. 2019; Montchal et al. 2019). These considerations
motivate our hypothesis that alEC specifically has an important
role in building temporal relational semantic memory, including
by integrating across distinctly cued temporal contexts, and such,
serving as a gateway to the later emergence of relational semantic
representations in MTG.

To test these ideas, we used functional magnetic resonance
imaging (fMRI) to measure neural signatures of learning and
memory for novel temporal relations across two sessions one
week apart. Stimuli were sequences of animated events (Fig. 1). A
given sequence was composed of six different animated, dynamic
stimuli (“Events”) repeated over 150 trials according to a proba-
bilistic transition structure. Events took place in the context of
a continually present background Object (a novel geometrical
figure). The dynamic Event stimuli were either movements of
the Object (“movement events”) or appearances of other stimuli
surrounding the object (“ambient events”). A transition structure
specified the probability that any particular Event followed any
other, as designated by a specific role (A–F) for each stimulus. In
this structure, Event A (a movement event) was reliably followed
by Event B (an ambient event). Participants were encouraged to
interpret these temporal relations as the Object “causing” the
appearance of the Event by virtue of its movement, which our
prior work with similar materials has established participants
do readily (Leshinskaya and Thompson-Schill 2019). We assessed
various aspects of learning and memory for these sequences
during fMRI.

During learning, we measured surprise as the difference in
BOLD signal between predictable and unpredictable Events and
change in surprise as the difference in surprise between the start
and end of the learning phase. This latter was used to index the
amount of learning-related change in a given neural area. Subse-
quently, during recall, we measured relational memory strength
for individual Event pairs using associative coding, a difference
of multivoxel pattern correlations between related pairs (Event
A and Event B) vs unrelated pairs (Sakai and Miyashita 1991;
Schapiro et al. 2012).

To measure if representations were integrative, we compared
these measures between different conditions. We assumed that
integrative representations would be influenced by cross-context
learning history, such that the representation of the current A–B
pair would be influenced by the A–B pair learned in the imme-
diately preceding sequence, even though these were shown in
different runs and had a distinctive background Object. We thus
varied whether the relational structure between consecutively
shown sequences was similar or different. In the Consistent con-
dition, the same stimulus served as Event B as in the preceding
sequences, so that the Object “caused” the same outcome in each
one. In the Inconsistent condition, the stimulus serving as Event B
varied between sequences, creating a certain amount of conflict
from the relation previously learned. If the representation in a
neural area is integrative across contexts, the representation of
an A–B pair in a given sequence will be influenced by prior A–B
pairs, and will thus be strengthened in Consistent sequences and
weakened in the Inconsistent sequences. If representations are
not integrative, they will encode the A–B pair of each sequence
irrespective of what was learned previously. We were interested
in the extent of integration in each ROI at each Session, predict-
ing that these effects would vary between medial temporal and
cortical ROIs.

In our paradigm, such integration also required a certain
amount of stimulus generalization. The Object in each sequence,
including Consistent sequences, had a different shape and Event
A was a different movement of that Object, mimicking how, in
real-world concepts, different specific movements or actions
lead to the same outcome, such as in making coffee. This kind of
generalization is an important characteristic of action semantics
and, thus, integration across such stimulus differences is a
signature of semantic knowledge acquisition.

Methods
Overview of paradigm
Participants underwent two sessions of MRI scanning, one week
apart, with identical materials. Each run began with a Learning
phase (Fig. 1A), in which participants explicitly learned the tem-
poral relations among a set of events. These relations were such
that Event A (an object movement) was always followed by Event
B (an ambient event), but not by Events C–F, which appeared
unpredictably. Learning was immediately followed by a Probe
phase (Fig. 2A), where a subset of the same Events (A, B, C, and D)
again appeared but no longer according to the learned sequence,
but instead such that all transitions were equally likely. Thus,
any predictive information was only available in memory. The
background Object was always present in the Events pertaining to
a given sequence. Each sequence was shown in a separate run and
belonged either to the Consistent or Inconsistent condition based
on its relational similarity to immediately preceding sequences
(Fig. 1B). Across Consistent sequences, the relational structure
among the stimuli was similar, such that Event B was always the
same stimulus (e.g. leaves falling). Across Inconsistent sequences,
a different stimulus served as Event B (exchanging their roles from
prior sequences). If the representation of an A–B relation in a given
sequence is influenced by prior sequences, and thus integrative, it
should be strengthened in the Consistent condition and weakened
in the Inconsistent condition. The stimuli and sequences for these
conditions were identical in Session 2. We examined the effect of
Consistency on neural relational memory strength for individual
A–B pairs in each sequence in the Probe phase and the overall
amount of learning-related change in the Learning phase, across
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Fig. 1. Learning phase materials, task, and analysis design. (A). Illustration of the Learning phase, using an example set of stimuli for one sequence. Each
sequence was 150 trials long and composed of six visually distinct stimuli, “Events,” labeled A–F. The six Events followed a specific sequence transition
structure, depicted below (graph; matrix). A background Object (here, the central geometric shape) was continually present during the Events. Events
were either the Object moving (“object-based events”) or the appearance of other stimuli in the background (“ambient events”). The transition structure
was such that Event A (the “cause”) was always followed by Event B (the “effect”). Event A was always object-based, creating the impression that the
Object “caused” the appearance of Event B. Participants’ task was to identify this A–B relationship. (B) In each run, participants saw a unique sequence
with a distinct Object. The transition matrix was always the same, but the way the stimuli were assigned to roles A–F could vary. Among Consistent
sequences, the same ambient stimuli served as Events B and C; Event A varied, being a distinct movement of each Object. Among Inconsistent sequences,
Events B and C varied (in fact, they were swapped, so that the stimuli exchanged roles). A brief demo of the stimuli is available at https://osf.io/2kxyv.
(C) During the Learning phase, we measured “Surprise” as a differential response to unpredictable stimuli minus predictable (A–B) stimuli. “Change in
surprise” measured how much Surprise strengthened over the course of the learning phase.

Session 1 and Session 2, in several critical ROIs (Fig. 3). These
included anatomically defined right-lateralized anterior and pos-
terior HC (aHC, pHC), anterior-lateral and posterior-medial EC
(alEC and pmEC), two parts of MTG (Glasser atlas areas TE1m and
TE1p; Glasser et al. 2016) and two parts of vmPFC (Glasser atlas
areas 9m and p32). Except for vmPFC, ROI definitions were pre-
registered, as were analysis methods unless otherwise indicated.

Participants
Thirty participants were recruited from the University of Cal-
ifornia, Davis community and provided written informed con-
sent. Procedures were approved by the UC Davis Institutional
Review Board. Twenty-four participants (18 female, 6 male; mean
age 24 years) were included in analyses: four were excluded for
excessive head motion and two did not complete both sessions.
This target sample size was pre-registered. All were neurologically
healthy, right-handed, and eligible for fMRI.

Preregistration
Methods were pre-registered on the Open Science Framework
at https://osf.io/5xpza/, DOI:10.17605/OSF.IO/5XPZA. The present
report focuses on a subset of the data collected and described
in the pre-registration. Deviations and exploratory (additional)
analyses are indicated throughout.

Stimuli & Procedure
Participants took part in two sessions, 1 week apart, and per-
formed six runs of fMRI scanning in each session (as well as
other tasks not reported here). Each run pertained to one of the
different sequences and consisted of a Learning phase followed
immediately by a Probe phase and lasted 5 minutes.

During the Learning phase (152 s), participants watched a con-
tinuous sequence of 150 1-s-long Events that was created from six
distinct animated stimuli. The animations included a continually
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Fig. 2. Illustration of the Probe phase task and analyses. (A) Participants performed a cover task in which they indicated whether each Event was one
they had seen in the prior Learning phase. The order of Events did not follow the learned sequence structure but was rather counterbalanced such
that each transition was equally likely, allowing us to estimate the neural response to each event independently of the others. (B) During the Probe
phase, Associative coding was used as an index of relational memory strength between A and B. The neural response to each individual event (A–D)
was estimated at each voxel (depicted for illustration as grids of squares). In a given ROI, the correlation among the voxel response patterns for each
pair of events was computed. The difference in correlation between pairs A and B vs A and C and A and D served as the measure of relational memory
strength (associative coding).

Fig. 3. ROIs: hand-traced aHC, pHC, alEC, examples in an individual
participant. MTG and vmPFC areas were defined using the surface-based
Glasser anatomical atlas (Glasser et al. 2016) using areas TE1p, TE1m, 9m,
and p32.

present background Object, and the Events could be “ambient”
(various items that appeared, moved, and disappeared around
the Object, such as bubbles, leaves, or stars) or object-based (a
rotation, vibration, or part movement of the Object). There were
five distinct object-based events in total and six distinct ambient
events in total.

Stimuli were assigned to the roles of Events A–F such that Event
B, C, and D were perfectly counterbalanced across participants.
As such, each stimulus served each role the same number of

times across participants. Thus, associative coding analyses con-
trolled for stimulus effects. Events C and D were typically grouped
together for analyses given their equivalence in the experiment.

The roles A–F designated a particular statistical role in the
sequence. Event B was strongly and uniquely predicted by Event
A, whereas the appearance of Events C–F was relatively random.
To convey this relational structure, the sequential appearance
of Events A–F was governed by a transition matrix that spec-
ified the probability of any Event appearing, given the occur-
rence of any other (Fig. 1A). Participants’ task was to identify
the predictable Event B, called “the effect,” which they selected
in a four-alternative forced-choice question at the end of the
run from alternatives Events C, D, and F. This test ensured that
participants had identified Event B during learning on the basis
of its predictability. The 150-event-long sequence was generated
probabilistically, including a random selection of the first Event
in the sequence, then proceeding to select the subsequent events
according to the probabilities in the transition matrix.

During the Probe phase (135 s), participants’ task was to indi-
cate, for each Event, if it had appeared in the just-seen sequence or
was novel. Events shown included all the events from the Learning
phase except Event E (to increase efficiency as it was not of inter-
est to analyses). Additionally, a null trial (a turquoise rectangle)
was shown to create an implicit baseline and thus improve the
ability to separately estimate the response to each other Event.
For the purpose of the task, Lure Events were added by selecting
randomly from other sequences (seven trials total). Events no
longer followed the predictive structure of the Learning phase;
they instead appeared in counterbalanced order, such that each
Event followed every other an equal number of times (exactly
seven for Events of interest and lures, and eight times for the
null event). There were 50 trials in total. The events also appeared
discontinuously: the entire background object disappeared and
the animated event was replaced with a fixation cross for 1.7 s
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for a total ITI of 2.7 s per trial (Fig. 2A). This was designed to dis-
courage participants from continuing to learn about any sequence
structure among the events.

The sequences (shown in separate runs) differed in the ways
the particular stimuli were assigned each Event Role A–F, although
the transition structure was always the same. Sequences 1–3 were
Consistent in their relational structure, while Sequences 4–6 were
Inconsistent (Fig. 2B). Within Consistency conditions, sequences
were shown consecutively but the order of the two conditions
was counterbalanced across subjects. Thus, participants either
saw 1–3 followed by 4–6, or 4–6 followed by 1–3. In either order,
Sequence 1 was never “consistent” with anything prior and was
thus considered Inconsistent for purposes of analyses, unless
indicated otherwise.

The Consistent sequences each used a distinct object-based
stimulus as Event A (e.g. tilting, color changing, or rippling). Event
B was always the same stimulus (e.g. bubbles), as was Event C (e.g.
leaves). Event D could vary among the sequences (for the purposes
of the cover task) but never conflicted with other Event types.
The relational structure among Events was thus kept consistent,
in that Events which served the predictable role always stayed
the same and those participating in unpredictable roles either
continued to do so or were new.

In the Inconsistent sequences, distinct object-based stimuli
again served as Event A, exactly as in the Consistent sequences
(e.g. were again tilting, color changing, and rippling). However, the
stimuli serving the roles of Events B exchanged roles with Events
C or D. For example, in Sequence 4, Event B could be stars, whereas
Events C and D were bubbles and leaves. In Sequence 5, Event
A would be leaves while Events C and D are stars and bubbles,
etc. Thus, the relational structure was conflicting among the
Inconsistent sequences.

The sequences were distinguished by a unique Object present
in all of that sequence’s events. To encourage integration, the
three sequences belonging to the same Consistency condition
were assigned similarly-shaped objects, as depicted in Fig. 2. Thus,
Sequences 1–3 had three similarly-shaped objects and Sequences
4–6 also had similarly-shaped objects. The specific set of three
shapes assigned to each condition were counterbalanced.

Session 2 was identical to Session 1: the same stimuli and
sequences were shown to the participants in the same order. This
means that the Consistent sequences remained consistent with
those shown in Session 1, such that if the shared Event B was
bubbles in Session 1, it was the same in Session 2. Inconsistent
sequences were also repeated. The only difference was that at
the very end of Session 2, the scan was followed by an additional
set of forced-choice questions regarding all of the Events from
all sequences participants had learned about. On each question,
participants selected between two snippets of Event pairs (drawn
from one of the six sequences): either A–B vs A–C or A–B vs A–
D. These were different and harder than prior questions because
they included questions about every sequence in a single, inter-
mixed question set. This required participants to recall which
Event stimuli were related in the context of each Object, which
was challenging as many of the Event stimuli were the same. For
an analysis of these questions, Sequence 1 was grouped with the
Consistent sequences.

fMRI acquisition
MRI data were acquired using a Siemens Skyra 3 T scanner at UC
Davis using a 32-channel coil. Anatomical volumes were acquired
with a T1- weighted MPRAGE sequence with 1 × 1 × 1 mm3 voxel
resolution, 256 mm field of view, time to repetition (TR) = 1.90 s,
and time to echo (TE) = 3.06 ms. Functional data were acquired

with a multiband echo-planar imaging (EPI) blood oxygen
level-dependent (BOLD) sequence using 64 interleaved slices with
a multiband acceleration factor of 2, 3 × 3 × 3 mm3 in-plane voxel
resolution, 64 × 64 mm2 matrix size, TR = 1,250 s, TE = 24 ms, and
flip angle = 76◦. Slices were aligned to −36◦ from ACPC to minimize
anterior temporal distortion. Static fieldmap estimation were
performed by collecting four volumes in the reverse encoding
direction as the main scans.

Analyses
Preprocessing was performed with the fMRIPrep package with
standard defaults as well as freesurfer and AFNI packages.
Anatomical scans were skull-stripped and white matter was
segmented from gray. Functional data were registered to the pre-
processed anatomical scans using the function f lirt, and head-
motion and rotation realignment parameters extracted. Signal
outliers were identified and a high-pass filter of 128 s was applied.
Functional slices were slice-time corrected and corrected for
distortion based on fieldmap estimation. Finally, functional data
were smoothed with a 4-mm full-width half-maximum Gaussian
kernel.

Linear models were used to estimate condition coefficients on
fMRI timeseries. Regressors of no-interest included six motion
and rotation realignment parameters and their first-order deriva-
tives; voxels flagged as signal outliers during preprocessing were
excluded. Regressors of interest were created for each type of
Event seen during the Learning phase (A–F) and Probe phase (A,
B, C, D, F, and lure trials) separately, with null trials and fixation
periods as the implicit baseline. Learning phase data were binned
by time in order to examine changes during this phase: trials of
each event type were assigned to a bin based on their order of
appearance, such that bin 1 for event C included the first three
appearances of event C, bin 2 the next three, and so on, for a
total of five bins per event type. Because Events A and B were
perfectly colinear during the Learning phase, they formed the
same regressor, AB.

During the Learning phase, we computed a measure of “sur-
prise” as a contrast between the unpredictable Events (C and
D) minus the predictable Event pair AB, at each time bin. The
slope of this measure across time bins were used as a measure
of learning, as changes in the magnitude of this difference must
be attributable to learning-related processes.

During the Probe phase, we measured relational memory
strength using a multivariate measure, associative coding, which
compared voxelwise correlations among pairs of Events. For each
individual condition, the t-value of the coefficients from linear
modeling for a given event type was extracted in each voxel,
reflecting the extent to which that voxel was activated in response
to that condition relative to the null trials. For a given region of
interest (ROI), this produced a vector of t-values for all of the vox-
els in that ROI. This vector was then correlated pairwise between
specific pairs of conditions, here A & B, A & C, and A & D, and then
subtracted. The difference in correlation between A and B minus
the other two pairs served as the measure of relational memory
strength for the A–B pair. This was done in the same fashion
for each sequence, performed separately, and then grouped by
condition for analyses as follows: Consistent sequences 2 and 3
composed the Consistent condition while Consistent sequence 1
(the first shown), and Inconsistent sequences 4–6 composed the
Inconsistent condition. For behavioral analyses, Events C and D
were combined into a single condition (henceforth “C/D”) as they
were functionally identical and served the same role in relevant
analyses.
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ROI definition
The ROIs reported are shown in Fig. 3. HC was defined using
automatic segmentations performed by Freesurfer, then split into
anterior and posterior portions by hand using morphological
criteria: the head was labeled as anterior and the body and
tail were labeled posterior. This split was motivated by prior
observations regarding functional differences between anterior
and posterior HC in the memory integration literature and others
(Poppenk et al. 2013; Preston and Eichenbaum 2013; Schlichting
et al. 2015; Schapiro et al. 2017). EC was hand-traced, with alEC
and pmEC delineated using tracing criteria guided by previous
validation studies (Maass et al. 2015) and the split motivated by
functional differences between these subregions (Schröder et al.
2015; Bellmund et al. 2019). Our preregistration indicated that
functional differences between alEC and pmEC were expected,
with alEC predicted be relevant here given past work showing
its role in temporal relational memory (Bellmund et al. 2019).
No evidence of associative coding was seen in pmEC and it was
not further considered. For MTG and other cortical areas, we
used the Glasser cortical-surface based atlas (Glasser et al. 2016)
aligned to individual anatomical surfaces to create individual
anatomical ROIs. Prior work on MTG, including ours, does not offer
a particular functional or anatomical definition, but we chose
the Glasser atlas so as to improve replicability for future work.
Our pre-registration indicated two Glasser areas for MTG: right
TE1p and TE1m, but we noted in our pre-registration that pilot
data indicated TE1p to be of particular importance, which held
up in these data as well as no associative coding was observed in
TE1m. Our pre-registration also described a functional localizer
that did not work and is not reported here. We did not pre-
register vmPFC, but chose Glasser ROIs p32 and 9m based on
proximity to previously reported results (Schlichting and Preston
2016; Tompary and Davachi 2017); this was motivated directly
by connecting our work to past findings. The focus on the right
hemisphere throughout is based on prior work showing the role
of right MTG in associative coding for similar stimuli (Leshin-
skaya and Thompson-Schill 2020). In exploratory analyses, we
also examined left-lateralized areas and further address the issue
of laterality in the Discussion.

Searchlight analysis
Freesurfer software was used to generate inflated cortical sur-
faces for each participant (Dale 1999; Fischl et al. 1999; Fischl et al.
2004), which were aligned into a common space and to functional
data using AFNI (mapIcosohedron) and algorithms implemented
in the Surfing toolbox (Oosterhof et al. 2014, 2011). Surfing soft-
ware was also used to define searchlight neighborhoods (curved
cylinders that confirm to individual surface topography) of 27 vox-
els in size. Analyses were then performed in each neighborhood,
treated equivalently to an ROI, and results plotted on the cortical
surface maps at the center coordinate of each neighborhood.

Multiple comparison correction was performed using permu-
tations over maximal cluster sizes, which tests the probability
of obtaining a cluster of a given size by chance alone. Clusters
are defined as contiguous activations above a given individual
activation threshold (here, P < 0.001). Permutations are created
by creating null maps, data that are not expected to reflect real
effects, by exchanging condition labels at the linear modeling
stage. However, null maps retain smoothness. Ten null maps were
created for each participant, then sampled randomly for group
analyses, which were performed as usual. At each of 1,000 itera-
tions, a group test is performed and the largest observed cluster
size is recorded, creating a null distribution of maximal cluster

sizes under the assumption of no meaningful data. Observed clus-
ters can then be evaluated for probability using this distribution.

Results
Behavior during the probe phase
During the Probe phase, participants identified whether Events
were part of the just-seen sequence or not with high accuracy
both in Session 1, Consistent M = 99.1%, Inconsistent 99.0%, and
Session 2, Consistent M = 99.1%, Inconsistent M = 99.7%, indicating
high vigilance on the cover task. Analyses reported in the Supple-
ment established that accuracy and reaction time (RT) data were
not confounded with the fMRI analyses.

During the Probe phase, the order of Events was counterbal-
anced such that all Event transitions were equally likely, but
it could be expected that cover task RTs would be facilitated
for transitions that had been more likely during learning. We
thus examined whether RTs to Event B differed as a function of
whether it was preceded by the predictive Event A or by unpre-
dictive Events C or D. A Consistency by Transition Type ANOVA in
Session 1 revealed a main effect of Transition Type, F(1,23) = 5.948,
MSE = 0.0252, P = 0.023, indicating that, counter-intuitively, RTs to
Event B were slower when preceded by predictive than unpredic-
tive events. Simple effects revealed that this effect was significant
within the Inconsistent condition, t(23) = 2.29, P = 0.031, but not
in the Consistent one (P > 0.20). No effects were seen in Session
2. The full pattern of results is shown in Figure S1. Overall, this
shows reverse behavioral facilitation in the Inconsistent condition
in Session 1, with unpredictive Events C/D facilitating RTs to Event
B relative to its predictor, Event A, perhaps reflecting the conflict
created in this condition.

Associative coding during the probe phase
We measured relational memory strength for each individual
A–B pair using associative coding: a previously reported effect
in which events related in memory exhibit a more correlated
neural response than unrelated events (Sakai and Miyashita 1991;
Schapiro et al. 2012). During the Probe phase of each run, we
obtained an independent measure of the neural response to each
Event Type (A, B, C, and D), producing for each one a vector of voxel
responses in each ROI. Within each run, we correlated the vector
of voxel responses to Event A with that of Event B, subtracting
from this the average correlation of Event A and Event C and of
Event A and Event D (Fig. 2B). This correlation difference served
as our dependent measure, associative coding, separately for each
learned sequence/run. Associative coding greater than 0 indicated
evidence of relational memory. To investigate whether representa-
tions were integrative, we tested whether the magnitude of asso-
ciative coding varied by Consistency condition. Effects of Session
were used to understand how relational memory strength varied
as a function of exposure and time, and interactions between
Consistency and Session to understand the influence of exposure
and time on the extent of integrative coding.

Anterior-lateral entorhinal cortex
Associative coding in each condition in alEC is shown in Fig. 4. If
alEC memory representations are integrative, associative coding
should be stronger in the Consistent condition than the Incon-
sistent condition. A Session by Consistency ANOVA revealed that
associative coding in alEC was higher in the Consistent than
Inconsistent sequences, F(23,1) = 8.999, MSE = 0.323, P = 0.006, with
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Fig. 4. Associative coding for individual A–B pairs in alEC and MTG (TE1p) as a function of Consistency and Session. In Session 1, alEC exhibited associative
differentiation in the Inconsistent condition but positive associative coding in the Consistent condition, with a significant difference between these; no
effects were seen in Session 2 but there were no interactions with Session. MTG showed significantly less associative coding than alEC in Session 1. In the
Consistent condition, associative coding increased in Session 2 vs Session 1 in MTG, yielding a Consistency effect in Session 2. A three-way interaction
indicated that these ROIs exhibited effects of Consistency of different magnitudes in Session 1, but not in Session 2. Error bars indicate standard error
of the mean (SEM), asterisks denote effects significant at P < 0.05, crosses indicate marginally significant effects.

no effect of Session. We further examined effects within Ses-
sion. There was an effect of Consistency in Session 1, M = 0.158,
t(23) = 3.214, P = 0.004, such that Consistent sequences exhibited
significant associative coding, M = 0.088, t(23) = 2.349, P = 0.028,
while Inconsistent sequences exhibited significant differentia-
tion, that is, negative associative coding, M = −0.071, t(23) = −3.306,
P = 0.003. Differentiation indicates that Events A and B were less
correlated than Events A and C or D. Within Session 2, however,
there was no effect of Consistency. Consistent sequences did not
show associative coding or differentiation, although there was
significant differentiation in Inconsistent sequences, M = −0.059,
t(23) = −2.463, P = 0.022. We saw no evidence of associative coding
in any condition (all P > 0.30) or any differences in pmEC (all
P > 0.40).

While surprising, differentiation, in which associated stimuli
are pulled apart in their neural patterns, is a commonly reported
phenomenon (Barron et al. 2017; Ritvo et al. 2019; Brunec et al.
2020; Wammes et al. 2021) and may especially arise in the Incon-
sistent condition because relations were conflicting with prior
sequences. This neural effect also aligns with the RT findings
reported above, which showed inhibition of A–B transitions rel-
ative to C/D–B transitions, although there was no significant
correlation across participants for these behavioral and neu-
ral measures (the amount of associative coding for Inconsistent
sequences in Session 1, r = 0.33, P = 0.11, and Session 2, r = −0.19,
P > 0.30).

Overall, alEC exhibited associative coding that was highly sen-
sitive to relational consistency in Session 1, such that it was
strongly positive in the Consistent condition and negative in
the Inconsistent condition, indicating integrative representations.
These effects were absent in Session 2 but there was also no
significant decline.

Hippocampus
In aHC, we saw no significant associative coding in any condition
(Fig. 5). A 2 Session (1 vs 2) by Consistency (Consistent vs Inconsis-
tent) ANOVA did not reveal any effects. There were also no effects
of Consistency within Session 1 or Session 2, all P > 0.20.

In pHC, a Session by Consistency ANOVA likewise did not
reveal any effects and there were no effects of Consistency within
Session 1 or Session 2. Associative coding was negative in the
Inconsistent condition in Session 1, M = −.038, t(23) = −2.359,
P = 0.027, like in alEC and in alignment with the reported RT
findings but also did not correlate with them across individual
participants. In summary, there was little evidence of positive
associative coding in HC, and no reliable influence of Session
or Consistency, indicating little participation of HC in the Probe
phase.

Although HC and EC are anatomically interconnected, effects
in alEC and pHC appeared divergent. To test this directly, we
compared associative coding in alEC and pHC using an ROI by Ses-
sion by Consistency ANOVA. This revealed a marginal main effect
of Consistency, F(23,1) = 4.250, MSE = 0.167, P = 0.05 and an ROI
by Consistency interaction, F(23,1) = 8.998, MSE = 0.156, P = 0.006,
indicating that alEC was more sensitive to Consistency than pHC.
This was significant within Session 1, F(32,1) = 6.25, P = 0.02, and
within Session 2, F(23,1) = 4.69, P = 0.041. When alEC was com-
pared with aHC, there was similarly an ROI by Consistency inter-
action, F(23,1) = 13.99, P = 0.001, which specifically held in Ses-
sion 1 F(23,1) = 13.11, P = 0.001 but not in Session 2, P > 0.10. This
reveals overall that integrative coding was generally higher in alEC
than HC.

Middle temporal gyrus
In MTG, using the TE1p ROI, a Consistency by Session ANOVA
showed a Consistency by Session interaction, F(23,1) = 6.589,
MSE = 0.106, P = 0.017 (Fig. 4). Within Session 1, there was no
evidence of associative coding in any condition, nor any
Consistency effects, indicating little participation of this area.
In Session 2, however, associative coding was significantly higher
for Consistent than Inconsistent sequences, t(23) = 2.99, P = 0.007.
Associative coding in Session 2 was marginal for Consistent
sequences, M = 0.055, t(23) = 1.970, P = 0.061, but not significant in
the Inconsistent ones, M = −.044, P >. 13. Correspondingly, there
was stronger associative coding in Session 2 than Session 1 within
Consistent sequences, t(23) = −2.491, P = 0.020, but not within
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Fig. 5. Associative coding for individual A–B pairs in aHC and pHC in Session 1 and Session 2 as a function of Consistency. In Session 1, pHC exhibited
negative associative coding (“differentiation”) such that related Events (A–B) exhibited less correlated responses relative to unrelated Events (A–C and
A–D). No area exhibited positive associative coding. Error bars indicate SEM and asterisks denote effects significant at P < 0.05.

Inconsistent ones, P > 0.25, explaining the Consistency by Session
interaction. This indicates that MTG showed highly integrative
representations, but only in Session 2, with a significant increase
from Session 1.

We did not see any effects in TE1m, an ROI we had pre-
registered but had noted was less likely to show effects based on
a prior pilot sample. In Session 1, there was no associative coding
in either condition (P >. 20) and no condition difference (P = 0.17),
and similarly so in Session 2 (all P > 0.38), and no effects of Session
(P > 0.65). This suggests our effects are relatively anatomically
specific to the more posterior ROI, which is also in line with many
of the findings on action and event knowledge in posterior aspects
of MTG (Leshinskaya et al. 2020). Effects were also specific to
the right hemisphere, which we had pre-registered as the focus
due to the right-lateralization of prior findings (Leshinskaya and
Thompson-Schill 2020).

The MTG (TE1p) effect appears qualitatively different from that
of alEC. We thus tested whether MTG showed a quantitatively
different pattern of effects than alEC using an ROI by Session by
Consistency ANOVA over associative coding in the two ROIs. This
revealed a main effect of Consistency, F(23,1) = 7.388, MSE = 0.266,
P = 0.012, an ROI by Consistency interaction, F(23,1) = 5.709,
MSE = 0.083, P = 0.026, and a three-way interaction between ROI,
Session, and Consistency F(23,1) = 6.59, MSE = 0.141, P = 0.017.
Within Session 1, there was an ROI by Consistency interaction,
F(23,1) = 14.39, MSE = 0.220, P < 0.001, whereas in Session 2, there
was a main effect of Consistency, F(23,1) = 7.439, MSE = 0.180,
P = 0.012, and no interactions. This reveals that both ROIs were
sensitive to Consistency in Session 2, but in Session 1, alEC was
more sensitive than MTG. Follow-up t-test showed that associative
coding was stronger in alEC than MTG among Consistent objects
in Session 1, t(23) = 2.488, P = 0.0206, and that the Consistency
effect in Session 1 was stronger in alEC than MTG, t(23) = 3.794,
P < 0.001. Overall, this reveals that MTG showed an effect of
consistency primarily in Session 2, whereas alEC did so at both
timepoints, and the three-way interaction demonstrated that
these patterns of effects were reliably different between the ROIs.

vmPFC
Because of the relevance of vmPFC to theories of memory
integration (Schlichting and Preston 2015), we performed similar

analyses in two anatomically defined vmPFC ROIs (Glasser areas
p32 and 9 m). In 9 m, a Session by Consistency ANOVA revealed no
effects (all P > 0.10); within-Session effects were also unreliable
(P > 0.07). In p32, there were no effects overall or within Session
(all P > 0.14). Associative coding was not significantly positive
or negative in any condition. Thus, there was little evidence of
associative coding in vmPFC in the Probe phase.

Prior work on vmPFC, however, has often reported mean acti-
vation differences, notably more activation during “congruent” or
consistent information (Tse et al. 2011; van Kesteren et al. 2013),
rather than effects on the strength of mnemonic information
encoding as examined above. In post-hoc analyses that better cor-
respond to these prior approaches, we examined mean activation
during the Probe phase as a function of Consistency. In Session 1,
we saw marginally more activation in the Inconsistent than Con-
sistent condition, in 9 m t(23) = −2.059, P = 0.051, and significantly
in p32, t(23) = −2.208, P = 0.038. This is opposite in direction to prior
reports. No mean activation effects were observed in HC, alEC or
MTG (post-hoc analyses).

Searchlights
To identify any additional areas that might show Consistency
or Session effects on associative coding, we used whole-brain
searchlights. We did not find any clusters passing the significance
threshold, but sub-threshold maps reveal that the strongest areas
to show a Consistency by Session interaction were in the vicinity
of our MTG ROI and precentral sulcus (Fig. S2, Supplementary
data). This suggests that our MTG findings are relatively anatom-
ically specific. Further searchlight results are shown in the Sup-
plementary Data.

Learning phase
During the Learning phase at the start of each run (Fig. 1A),
participants were either initially exposed (Session 1) or re-exposed
(Session 2) to predictive information by watching each intact
sequence (the memory of which we examined during the Probe
phase.) The Learning phase fMRI data provided an opportunity
to examine how the roles of our ROIs in memory compare to
their roles in learning. To measure learning-related signals, we
used a measure of “surprise” (Fig. 1C) as the differential activation
to unpredictable vs predictable events. During this phase, Event
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B always followed A, and thus could be anticipated, whereas
Events C and D could not be anticipated. (Events A and B had to
be modeled as one regressor, as they were perfectly temporally
correlated). This differential response could be in either direction,
where a positive value would reflect a stronger response to unpre-
dictable information and a negative value would reflect a stronger
response to familiar information, perhaps due to recollective
processes. Either response is expected to scale as participants
increasingly learn to identify the predictive pairs. We thus com-
puted “change in surprise” as the difference in surprise between
the start and end of each learning phase to measure the amount
of learning-related change in each ROI. This was then compared
to 0 to measure if learning-related change was reliable (positive or
negative), and then compared between Sessions and Consistency
conditions. If change in surprise is stronger in the Consistent than
Inconsistent condition, then an area exhibited more learning-
related change in situations where information could be built up
from the preceding sequences than when it conflicted, suggesting
that learning was facilitated by Consistency and was thus inte-
grative. Although these measures were pre-registered, we had not
pre-registered the comparisons between Consistency conditions
or Sessions for surprise, so these analyses are exploratory and
motivated by comparing them to effects observed in the Probe
phase.

Anterior-lateral entorhinal cortex
Overall surprise in alEC was negative but not significantly
different from zero (Session 1: M = −.028, P > 0.40; Session 2,
M = −0.048, P > 0.15). However, there was significant change
in surprise, indicating that a stronger response to predictable
than unpredictable events increased with learning. Session 1,
Consistent sequences showed significant negative change in
surprise, M = −0.061, t(23) = −3.01, P = 0.006, but Inconsistent
sequences showed no change, M = 0.037, P > 0.10 (Fig. 6). A Session
by Consistency ANOVA on change in surprise revealed a Consis-
tency by Session interaction, F(23,1) = 12.100, MSE = 0.154, P = 0.002,
revealing a Consistency effect within Session 1, t(23) = −3.215,
P = 0.004, but not in Session 2. Session comparisons revealed that
Consistent sequences showed more change in surprise in Session
1 than Session 2, t(23) = −2.256, P = 0.034, whereas Inconsistent
sequences showed more change in surprise in Session 2 than
in Session 1, t(23) = 2.240, P = 0.035, explaining the interaction.
Change in surprise was not significant in Session 2 in either
condition, P > 0.10. Thus, change in surprise in alEC was sensitive
to Consistency and Session, with stronger (more negative) effects
of Consistency in Session 1 than in Session 2. This indicates
integrative representations that were updated more in Session
1 than in Session 2.

Hippocampus
Surprise in aHC was also overall negative (Session 1, M = −0.907,
t(23) = − 3.40, P = 0.003, Session 2, M = −0.914, t(23) = − 2.53), as
was change in surprise: there was significant negative change
in surprise in Session 1 in Consistent sequences, M = −0.057,
t(23) = −2.535, P = 0.019, and marginally so in Inconsistent
sequences, M = −0.040, t(23) = −2.01, P = 0.056, but no change in
surprise in Session 2, P > 0.20. A Session by Consistency ANOVA
did not reveal any effects of Consistency or Session on change in
surprise magnitude (Fig. 7). Thus, although aHC showed some
learning-related changes in Session 1, these did not vary by
Session or Consistency. The observation of negative surprise in
aHC is consistent with the observation that unpredictability per se
does not largely drive HC responses and that instead, recollective

processes engaged during predictive trial pairs might dominate
the responses here (Kumaran and Maguire 2007). However, there
was no evidence of change or condition differences. In pHC, there
was no significant change in surprise and no effects in a Session
by Consistency ANOVA.

The above set of results suggest that alEC might be more sensi-
tive to Consistency than aHC. We tested this directly using a three-
way ANOVA over change in surprise, with factors ROI, Session, and
Consistency. This revealed a three-way interaction, F(23,1) = 4.434,
MSE = 0.049, P = 0.046, and a two-way interaction between Ses-
sion and Consistency, F(23,1) = 6.685, MSE = 0.112, P = 0.017. Sim-
ple effects revealed that across both ROIs, the effect of Con-
sistency was overall larger (more negative) in Session 1 vs Ses-
sion 2, t(23) = −2.586, P = 0.017. Moreover, the Consistency effect
changed more between Session 1 and Session 2 in alEC than aHC,
t(23) = −2.106, P = 0.046. However, there were not greater Consis-
tency effects overall in alEC than aHC. This suggests these areas
were not differentially sensitive to Consistency overall, but that
alEC exhibited more Session differences. This is consistent with
the idea that integrative learning in alEC declined by Session 2.

Middle temporal gyrus
Unlike alEC and aHC, MTG exhibited positive change in surprise,
i.e. more activation in response to unpredictable than predictable
increasing with learning (Fig. 6). Overall surprise was positive
but not different from zero (Session 1, M = 0.080, P > 0.17; Session
2, M = 0.046, P > 0.40). However, surprise changed significantly
over exposure. In Session 1, Consistent sequences showed
marginally positive change in surprise, M = 0.112, t(23) = 1.945,
P = 0.064, and Inconsistent ones were significantly positive,
M = 0.100, t(23) = 2.900, P = 0.008. In Session 2, the change in
surprise was significantly positive within Consistent sequences,
M = 0.174, t(23) = 3.847, P < 0.001, but not within Inconsistent ones,
M = 0.013, P > 0.80. A Session by Consistency ANOVA on change
in surprise revealed only a marginal main effect of Consistency,
F(23,1) = 3.887, MSE = 0.197, P = 0.061 and no interactions. Within
Session 1, there was no effect of Consistency, P > 0.70, but there
was in Session 2, t(23) = 2.511, P = 0.020. Overall, MTG exhibited
learning-related change activity throughout both Sessions with
only some evidence of Consistency differences.

To quantify differences between MTG and alEC, a three-way
ROI by Session by Consistency ANOVA revealed a main effect of
ROI, F(23,1) = 13.890, MSE = 0.559, P = 0.001, an interaction between
ROI and Consistency, F(23,1) = 6.066, MSE = 0.140, P = 0.022, and
an interaction between Session and Consistency, F(23,1) = 8.642,
MSE = 0.272, P = 0.007. Within Session 1, there was a main effect
of ROI, F(23,1) = 7.82, MSE = 0.354, P = 0.01, reflecting that change
in surprise was positive in MTG and negative alEC. There was also
a trend toward an ROI by Consistency interaction, F(23,1) = 3.73,
MSE = 0.0829, P = 0.066, in the direction of potentially stronger Con-
sistency effect in alEC than MTG. In Session 2, there was a main
effect of ROI, F(23,1) = 10.08, MSE = 0.2138, P = 0.004, again reflect-
ing positive vs negative change in surprise in the two ROIs. Unlike
in Session 1, there was a main effect of Consistency, F(23, 1) = 6.00,
MSE = 0.301, P = 0.022, reflecting the fact that both ROIs exhibited
Consistency effects in Session 2. Follow-up t-tests revealed that
Consistency effects were stronger in Session 2 than Session 1
overall, t(23) = −2.940, P = 0.007. In summary, MTG showed positive
change in surprise while alEC showed negative change, and the
ROIs did not differ in the strength of their Consistency effects.

vmPFC In vmPFC (9 m and p32), p32 showed negative over-
all surprise in Session 1, M = −0.182, t(23) = −2.500, P = 0.020 and
marginal negative change in surprise in Consistent sequences in
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Fig. 6. Change in Surprise during the Learning phase in alEC and MTG (TE1p) as a function of Session and Consistency. In Session 1, alEC showed
increasingly negative surprise in the Consistent condition, significantly more than the inconsistent condition, which showed no change. This interacted
with Session, such that this difference was weaker and absent in Session 2. MTG showed significant change in surprise in the inconsistent condition in
Session 1 with no Consistency difference. A Consistency effect emerged in Session 2, where only the Consistent conditions exhibited significant change.
Error bars indicate SEM, asterisks denote effects significant at P < 0.05, and crosses indicate marginal effects.

Fig. 7. Change in Surprise during the Learning phase in aHC and pHC as a function of Session and Consistency. Only aHC showed any significant change
in surprise, with increasingly negative surprise from the start to the end of the Learning phase in Session 1 in the Consistent condition, but no effect of
Consistency or Session and no interactions. Error bars indicate the SEM, asterisks denote effects significant at P < 0.05, and crosses indicate marginal
effects.

Session 1, M = −0.096, t(23) = −2.005, P = 0.057, as well as marginal
change in surprise overall in Session 2, M = −0.0785, t(23) = −2.038,
P = 0.053. Surprise and change in surprise were not significant
otherwise (P > 0.10) and there were no effects of Consistency or
Session (P > 0.10). Thus, some parts of vmPFC showed learning-
related change in this task but we did not observe any influence
by Consistency.

To summarize, learning-related changes during sequence
exposure revealed effects of Consistency and Session most
prominently in alEC, which exhibited learning-related changes
more strongly in the Consistent than Inconsistent condition in
Session 1, but not so in Session 2, mirroring the memory effects
in the Probe phase. MTG exhibited learning-related changes

through both Sessions. This aligns with the idea that alEC was not
substantially affected by the presentation of learning materials
after Session 1, whereas MTG was, corresponding with its slower
updating of memory representations (which became stronger in
Session 2). Learning-related changes were minimal in HC and in
vmPFC, also in line with Probe phase findings.

Inter-region correlations
The findings from the Learning and Probe phases overall suggest
that both alEC and MTG played significant roles in learning and
memory, but with different time courses, such that alEC showed a
rapid formation of memory representations and a later decline in
learning, whereas MTG representations were slower to update and
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showed continued learning-related change. Our pre-registration
included the hypotheses that there would be a functional rela-
tionship between alEC in Session 1 and MTG in Session 2, which
we tested by examining cross-session correlations of individual
participants’ memory strength (associative coding) and learning
related change (change in surprise). We saw that change in sur-
prise was negatively correlated between alEC at Session 1 and
MTG at Session 2, r = −0.565, t(22) = −3.209, P = 0.004, showing that
more negative change in surprise in alEC in Session 1 predicted
less negative change in surprise in MTG in Session 2. There were
no correlations in associative coding (P > 0.70). This suggests some
functional relationship between these areas across time, but this
did not appear to hold for memory measures, indicating mixed
evidence for this hypothesis.

Post-scan recall
Forced-choice questions at the end of Session 2 required partici-
pants to recall each of the predictive relations they had learned
from all sequences tested in a single block. Questions asked
participants to selected between two Event pairs: A followed by B
vs A followed by C, in the context of the background object cueing
the sequence it belonged to. We found that for pairs from Inconsis-
tent sequences, participants were not overall above chance (50%),
M = 46%, P > 0.35, but they were significantly above chance for
pairs from Consistent sequences, M = 56%, t(23) = 2.106, P = 0.046,
with no significant difference between conditions. As emphasized
in the Methods, these questions were especially difficult because
they required participants to recall which relational structure
went with which Object, as event stimuli were highly overlapping
across sequences.

In a post-hoc exploratory analysis, we tested which neural
signatures might have predicted participants’ ability to retrieve
these event associations from their context cues (the Object
shapes) using correlations between individual participants’
accuracy on this test and their neural measures (associative
coding and change in surprise) in our ROIs. We found a
correlation with associative coding in aHC in Session 1, r = 0.467,
t(22) = 2.476, P = 0.021 and with change in surprise in pHC in
Session 2, r = −0.444, t(22) = −2.323, P = 0.029. In vmPFC, we saw
correlations in Session 1 in p32, r = 0.435, t(22) = 2.2632, P = 0.034
and marginally so in 9 m, r = 0.389, t(22) = 1.983, P = 0.060; effects
held across Sessions, 9 m, r = 0.486, t(22) = 2.607, P = 0.016, and p32,
r = 0.425, t(22) = 2.204, P = 0.038, but not in Session 2 alone. These
correlations tentatively suggest that HC and vmPFC did have
functional relevance to context-cued relational memory in our
task, but should be interpreted with caution given their post-hoc
nature. No correlations were seen with either learning or memory
measures in MTG or alEC.

Discussion
Using fMRI, we observed that alEC and MTG play complementary
roles in the acquisition of relational knowledge. Signatures of rela-
tional memory and of integrative coding were seen immediately
after learning in alEC and were followed after more exposure and
time by similar effects in MTG, revealing different time courses
for similar functions in these areas. Congruently, the amount of
learning-related change declined with time/exposure in alEC but
persisted in MTG. These findings offer the new insight that alEC
and MTG have important complementary roles in building new,
integrative representations of event relations, shedding light on
the neural pathways that build semantic memory from experi-
ence. This serves to bridge a major gap between episodic encoding,

memory integration, and the formation of semantic memory,
and aligns with the idea of different specializations within these
systems.

Implications for theories of neural organization
of episodic and semantic memory
CLS theory has long proposed that experiences are first encoded
in an episodic memory system in MTL (HC and EC) but eventually
come to rely on cortical sites elsewhere. Yet prior work has rarely
tracked memory representations both in MTL and in specific
semantic areas, many of which have content specializations, nor
investigated when in the course of learning integrated memory
representations emerge in semantic sites. We reasoned that, with
exposure and time, signatures of new relational knowledge should
emerge in semantic sites specialized for the content of what is
learned—here, temporal relation knowledge in MTG, selected on
the basis of prior patient and imaging evidence on its role in action
and event concepts (discussed further below). We also predicted
that alEC might serve as an intermediate stage between episodic
and semantic memory for temporal relations. Our findings sup-
port these ideas by showing signatures of integrative coding in
MTG that increased with time and exposure following rapidly
formed integrative memory in alEC. The participation of these par-
ticular areas aligns with their specializations in temporal episodic
memory and action and event semantics, respectively.

Our findings suggest that alEC has a special role: its learning
is both rapid and integrative. In the first session, alEC already
showed evidence of relational memory representations and these
representations were integrative (revealed as an effect of Con-
sistency). These effects were significantly stronger than in HC.
Relational memory strength and consistency effects are likely
related: by virtue of integrating across contexts, alEC could build
stronger representations in the Consistent condition than it could
if it did not integrate. In Session 2, we saw no significant decline
in relational memory strength, suggesting alEC’s role in memory
may persist across a week’s delay. In contrast, learning-related
changes were stronger in Session 1 than Session 2, suggesting
less updating during the second exposure, consistent with rapidly-
formed but then stable memory representations.

MTG showed evidence of relational memory and integrative
coding subsequently to alEC, after more exposure and a week’s
delay, with a significant increase from Session 1 to Session 2.
Learning-related changes were seen in both sessions, in line with
continual learning throughout exposure. We thus supported the
hypothesis that, following sufficient exposure and time, new,
integrated relational knowledge increases its reliance on this
specific semantic site. That said, we cannot distinguish, in this
study, whether Session effects were due specifically to additional
exposure, reflecting a slower learning rate in MTG, or due to time-
dependent reorganization processes such as consolidation.

The joint participation of alEC and MTG in these processes
suggests that these areas both contribute to event knowledge
acquisition. The role of alEC in forming temporal relational
memory from experience (Schröder et al. 2015; Tsao et al. 2018;
Bellmund et al. 2019; Montchal et al. 2019) may be part of a
functional processing pathway together with MTG, which stores
event-related knowledge that is updated with this experience.
Investigating this idea was motivated by the longstanding
observation that relational structure is a core property of event
and action concepts (Garvey and Caramazza 1974; Miller and
Johnson-Laird 1976; Gentner 1983; Pinker 1989; Carey 2009;
Bedny and Caramazza 2011; Leshinskaya et al. 2020; Wurm
and Caramazza 2021). We thus suggest that alEC and MTG
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together form a potentially specialized system for building event
knowledge.

It remains unclear whether the representations in alEC and
MTG emerged independently or interactively. Our findings were
mixed: individual participant differences in relational memory
strength in alEC in Session 1 did not significantly predict those
in MTG in Session 2, but we did see that the amount of Session
1 learning-related change in alEC inversely predicted those in
Session 2 in MTG, which might suggest some dependency between
these areas such as a shift in relative reliance. The question
of cortico-MTL independence in learning remains an area of
research. The classic view that MTL “teaches” cortex (McClelland
et al. 1995; Dudai et al. 2015) is challenged by recent findings
showing that new information can be cortically represented/up-
dated in parallel with HC in some cases (Tse et al. 2011; Mcclelland
2013; Hebscher et al. 2019). It thus remains an important question
for future research to understand whether and in what cases new
semantic knowledge in MTG forms independently of alEC and in
what ways they might interact.

In contrast to findings from associative inference paradigms
(Schlichting and Preston 2015; Morton et al. 2017), we did not find
evidence of integrative representations in HC during memory or
learning. However, we also only saw weak evidence of relational
memory or learning-related change in this area. We suspect that
the cross-context stimulus diversity led HC to separate the A–
B pairs across contexts, rather than integrate them, and that
this led to weaker A–B representations overall. In prior work
that reported integrative memory representations in HC (Collin
et al. 2015; Schlichting et al. 2015; Tompary and Davachi 2017),
participants learned stimulus pairs A–B and B-C, where B was
an identical stimulus. HC played a role in integrating these pairs
to infer a transitive relation between A and C. Our paradigm
involved stimulus differences in distinctly cued contexts. A–B
pairs differed in the shape of the object and in the movement
stimulus serving as A. HC is known to elicit diverse responses to
similar events when they are associated with unique contextual
details (Winocur et al. 2010; Dimsdale-Zucker et al. 2018; Pacheco
Estefan et al. 2019; Zheng et al. 2021). We thus suspect that
HC did not integrate individual A–B pairs across these contexts,
leading to weak A–B pairs in both conditions and the absence
of an integration signature. This idea motivated an exploratory
analysis in which we correlated individual differences in memory
strength in HC with the ability to recall and distinguish all of
the A–B pairs at the end of the study based on each context
cue. We found tentative, post-hoc evidence for this idea. Another
important caveat, however, is that the lower spatial resolution of
our functional data precluded a more detailed examination of HC
subfields, among which CA1 is known to be more integrative than
others (Schlichting et al. 2014; Schapiro et al. 2017). Future work
using high resolution imaging could potentially better resolve
conflicting findings regarding integrative coding in HC.

vmPFC is also an area commonly targeted in studies of mem-
ory integration across neurophysiology (Takehara et al. 2003;
Takashima et al. 2006; Lesburguères et al. 2011; Tse et al. 2011;
Richards et al. 2014; Kitamura et al. 2017; Graves et al. 2022) and
fMRI (Schlichting et al. 2015; Tompary and Davachi 2017; Barron
et al. 2020; Park et al. 2020). Again in contrast to prior work, we
did not find significant evidence for integrative representations in
vmPFC. We saw instead that overall activation was higher in the
Inconsistent than the Consistent condition, possibly in line with
findings that mPFC is critical for incorporating conflicting infor-
mation into existing knowledge structures (Richards et al. 2014)
and with the view that vmPFC supports the process of integration

more than serving as a memory site for the integrated content
per se (Takashima et al. 2006; Preston and Eichenbaum 2013; van
Kesteren et al. 2013; Hardt and Nadel 2017). Nonetheless, it is also
possible that vmPFC supports integrated memory representations
for specific kinds of content, but not for temporal relations among
events, stimuli which were designed to engage MTG.

Relationship to prior work on MTG
We focused on right-lateralized MTG following our prior work
showing relational memory in this area with similar stimuli
(Leshinskaya and Thompson-Schill 2020) as well as the many
findings connecting this anatomical region to semantic memory
for actions, tools, and events (Leshinskaya et al. 2020; Wurm
and Caramazza 2021). For visual stimuli, MTG responses are
often bilateral (Damasio et al. 2001; Bedny et al. 2008; Tarhan
and Konkle 2020) and include signatures of action categories
generalizing across actors (Kable and Chatterjee 2006; Hafri et al.
2017), effectors (Vannuscorps et al. 2019), or physical manners
of execution (Wurm and Lingnau 2015; Moritz et al. 2017) and
event memory (Chen et al. 2017). Although these effects surround
a similar anatomical site, they are best considered a mosaic
of various specializations. These include retrieval of action
properties of objects (Martin et al. 1995; Damasio et al. 2001;
Kable et al. 2002; Phillips et al. 2002; Tranel et al. 2003) and, on
the left side, selectivity for verbs over nouns and sensitivity to
grammatical structure (Bedny et al. 2008; Bedny and Caramazza
2011; Peelen et al. 2012; Hernandez et al. 2014) as well as
selectivity to tools and hands (Martin et al. 1996; Chao and Martin
1999; Beauchamp et al. 2002; Damasio et al. 2004; Martin 2007;
Bracci et al. 2011; Bracci and Peelen 2013). Our prior work has
also shown that temporal relational information is explicitly
reflected in tool-selective parts of MTG (Leshinskaya et al. 2021).
The present findings are within anatomical range of these prior
results, but it is not possible to establish if they pertain to the same
functional area without a within-study comparison. Using an
anatomical atlas, like the Glasser atlas used here, to define these
ROIs may improve our ability to relate findings across studies.

Relationship to prior work on EC
Our work is in line with increasing evidence demonstrating the
role of EC in integrative relational memory. Relational memory in
general has long been attributed to HC (Eichenbaum and Cohen
2001; O’Reilly and Rudy 2001) with EC implicated alongside it
by virtue of EC’s role as the major source of afferent and effer-
ent connections between HC and neocortex (Burwell et al. 1995;
Suzuki 1996). Yet recent evidence characterizes EC as more than
just a relay, and rather as playing an active, integrative role in
information processing (Kumaran and McClelland 2012; Kitamura
et al. 2014; Koster et al. 2018; Gerlei et al. 2021) and serving as
an early bio-marker of Alzheimer’s disease (Khan et al. 2014;
Holbrook et al. 2020). EC-HC recurrent connections are them-
selves essential for temporal associative learning (Suh et al. 2011;
Kitamura et al. 2014) and it is these recurrent connections that
may allow EC, more than HC, to form integrative relational mem-
ory (Kumaran and McClelland 2012). Related findings characterize
EC as forming relational knowledge that spans diverse experi-
ences. In navigation studies, grid cells in pmEC have more stable,
persistent patterns of firing across diverse environments than
HC place cells, allowing pmEC to encode common spatial struc-
tures across contexts with diverse sensory details (Behrens et al.
2018). EC representations in humans support inferential short-
cuts across separately learned but transitively connected infor-
mation among social stimuli (Park et al. 2020; Park et al. 2021b).
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Our findings that alEC integrates predictive information across
contexts with diverse sensory detail to build integrative knowl-
edge aligns with this emerging understanding of the general
properties of EC function.

Our findings also help characterize the distinct specializa-
tions within MTL and within EC. Associative coding, the measure
used here in which temporally-associated stimuli elicit correlated
neural responses, is a classic result in the neurophysiology of
EC and surrounding MTL areas (Miyashita 1993; Higuchi and
Miyashita 1996; Messinger et al. 2001; Naya et al. 2001, 2003),
with convergent findings in human fMRI (Schapiro et al. 2012;
Garvert et al. 2017). The specific contributions of MTL sub-areas
have not been well established, but recent evidence has shown
notable specializations. In rodents, pmEC encodes information
about spatial context, whereas alEC encodes information about
temporal context (Tsao et al. 2018). Human fMRI data show that
alEC activity correlates with the precision of temporal memory
(Montchal et al. 2019) and that memory representations in alEC
reflect temporal proximity whereas those in pmEC reflect spa-
tial proximity (Bellmund et al. 2019). Our findings of associative
coding for temporal relations in alEC align with this emerging
picture.

Conclusion
The present study sheds light on the neural pathways that build
knowledge of temporal relations from experiences of events. We
showed that new temporal relation information is rapidly repre-
sented and integrated in alEC, prior to similar signatures becom-
ing detectable in MTG with additional exposure and a week’s
delay. This suggests that new experiences lead to integrated mem-
ory representations first in an intermediary stage in alEC and then
in a specific semantic site—here, a region previously established
as important for action and event concepts. These results shed
light on specific sites within episodic and semantic memory
systems for building temporal relational knowledge and their
time- and exposure- dependent changes. We anticipate these
findings to advance neural and theoretical models of memory
updating and interaction among episodic and semantic memory
systems.
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