
Contents lists available at ScienceDirect

Cognition

journal homepage: www.elsevier.com/locate/cognit

Incidental binding between predictive relations

Anna Leshinskaya⁎, Mira Bajaj, Sharon L. Thompson-Schill
Department of Psychology, University of Pennsylvania, United States of America

A R T I C L E I N F O

Keywords:
Predictive learning
Structure learning
Statistical learning

A B S T R A C T

Knowledge of predictive relations is a core aspect of learning. Beyond individual relations, we also represent
intuitive theories of the world, which include interrelated sets of relations. We asked whether individual pre-
dictive relations learned incidentally in the same context become associatively bound and whether they spon-
taneously influence later learning. Participants performed a cover task while watching three sequences of events.
Each sequence contained the same set of events, but differed in how the events related to each other. The first
two sequences each had two strong predictive relations (R1 & R2, and R3 & R4). The third contained either a
consistent pairing of relations (R1 & R2) or an inconsistent pairing (R1 & R3). We found that participants'
learning of the individual relations in the third sequence was affected by pairing consistency, suggesting the
mind associates relations to each other as part of the intrinsic way it learns about the world. This was despite
participants' minimal ability to verbally describe most of the relations they had learned. Thus, participants
spontaneously developed the expectation that pairs of relations should cohere, and this affected their ability to
learn new evidence. Such associative binding of relational information may help us build intuitive theories.

1. Introduction

Part of what makes human cognition so sophisticated is that we
represent not a catalog of sensory facts, but rather, coherent world
models (theories) that explain and predict observations (Carey, 2009;
Gelman & Wellman, 1991; Gopnik, 1996; Gopnik & Meltzoff, 1997;
Gopnik & Wellman, 1994; Keil, Smith, Simons, & Levin, 1998; Kemp,
Tenenbaum, Niyogi, & Griffiths, 2010; Lombrozo, 2009; Tenenbaum,
Kemp, Griffiths, & Goodman, 2011). In a canonical example, our theory
of mind explains people's actions by relating what they see to what they
know, and what they know and desire to what they do (Baker, Saxe, &
Tenenbaum, 2009, 2011; Dennett, 1987; Premack & Woodruff, 1978).

Much other knowledge—about personality traits, technology,
biology, cooking—also has a theory-like character, but is unlikely all
innate, raising the question of how it could be learned (Schulz,
Goodman, Tenenbaum, & Jenkins, 2008). The pervasiveness of theories
such as these makes it likely that our minds are equipped and predis-
posed to build them. Here, we describe an automatic process that could
form part of such a mechanism. Specifically, we claim that in the course
of spontaneous associative learning, the human mind is already inclined
to build knowledge structures which have a theory-like character.

One distinguishing feature of theories, as opposed to individual
relations, is that they are coherent, interrelated sets of relations (Gopnik

& Meltzoff, 1997). In a theory of mind, an agent will believe what he
perceives (relation 1) and act on what he desires (relation 2). The
holder of the theory believes that if she observes relation 1, that relation
2 should also hold. But prior to having the theory, how would she know
that these individual dependencies hang together?

Prior work demonstrates that both adults and children can learn
how multiple predictive relations covary on the basis of statistical
evidence, and use this to reason about new scenarios. Schulz and col-
leagues (Schulz et al., 2008) found that pre-schoolers infer that multiple
causal relations about the behaviors of novel blocks will hang together
in the future if they have in the past. If a red block ‘activates’ a blue
block, and a blue block activates a yellow block, children readily infer
that a novel block activated by a red block (acting as if blue) will also
activate the yellow one: they generalized the pairings of relations.
Adults do the same during explicit causal reasoning (Waldmann, Meder,
Von Sydow, & Hagmayer, 2010). Gershman (2017) showed that adults
rationally use context variation to guide such inferences: if multiple
lower-order relations (e.g., about which of several foods are pleasant vs.
aversive) vary by context, they expect such relations to pattern together
consistently in new contexts, when asked to reason about them ex-
plicitly.

Reasoning of this sort is rational and adaptive. Here we wondered
whether co-variation of relations will affect learning itself. In other
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words, does the very way in which the mind encodes information in-
clude the knowledge of which relations predict each other? In prior
work, participants were taught relations in an explicit manner, and then
asked to reason on their basis (i.e., about what will happen in new
situations). Here we tested whether adult participants will sponta-
neously encode relations among relations during passive observation,
and whether this encoding will inadvertently affect how accurately they
learn new predictive relations. If so, tracking the co-variation among
relations may be an intrinsic part of how the human mind encodes the
world.

To test this idea, we presented participants with four individual
predictive relations among sequentially presented events, where pairs
of these relations (‘relational sets’) co-varied across two contexts. In a
critical third context, we measured how well participants could learn
two similar relations which were paired either consistently, or incon-
sistently. During the task, there was no demand or benefit to reasoning
about pairings of relations; we measured only how well participants
could learn each relation individually. However, if the covariation
among relations is an intrinsic part of associative learning, then the
consistency of their pairings should affect learning, even when this is
inadvertent and produces errors. In other words, we propose that the
binding of relations into coherent sets might operate similarly to how
we spontaneously learn other observed, predictive statistics of the en-
vironment (Reber, 1989; Saffran, Aslin, & Newport, 1996)—but at a
higher order level, at which relations become associated with other
relations.

To test this, it is essential to vary predictive relations while con-
trolling for the individual events involved in them. Imagine that one
relation is that flipping a light switch results in the light turning on, and
a second relation in the same context is that pressing a button causes a
sound. In a different context, learners might anticipate the second rule
if they observe the first, but this could happen because they are an-
ticipating the sound to occur, regardless of whether it is related to the
button. Thus they could have simply associated the component events,
not the relations themselves. To avoid this, one must use multiple
contexts in which the same events occur with equal frequency, but are
related in different ways. In the present experiment, we specifically
target the associability of relations themselves in this way. We thus
address a distinct question from related work on grouping action rules
(Collins & Frank, 2013, 2016; Werchan, Collins, Frank, & Amso, 2015).1

Furthermore, we query observational learning, rather than action-re-
ward learning or stimulus-reward learning, by employing a statistical
learning paradigm (Orbán, Fiser, Aslin, & Lengyel, 2008; Saffran et al.,
1996; Turk-Browne, Jungé, & Scholl, 2005). This is important because
our theories of the world are most often constructed to explain observed
events, which often may not have an explicit reward or action asso-
ciated with them.

In our statistical learning paradigm, we presented participants with
continuous sequences of animated events (Fig. 1), which appeared as
part of distinct sequences (or ‘contexts’) distinguished by different ob-
jects present in the events. All sequences involved the same eight
events, which all appeared with equal frequency. However, the pre-
dictive structure among the events varied, so that different subsets of
the 8 were predictively related vs unrelated, allowing us to create re-
lational sets. Each sequence contained two predictively related pairs,
each involving two events (which we term the ‘cause’ and an ‘effect’),
such that the effect almost always followed the cause. The first two
(‘Training’) sequences set up how the individual cause-effect relations

themselves were paired. For example, in Sequence A (as shown in
Fig. 2), one predictive relation might be that the object tilting is fol-
lowed reliably by the light flashing (R1), and a second might be the
object turning blue predicts the multi-colored stars appearing (R2). The
other 4 events appeared equally frequently but were not part of any
predictable pairs. In Sequence B, the events that had been part of cause-
effect pairs in Sequence A (tilt, light, color change, and stars) became
unrelated, while the other 4 events formed two other cause-effect pairs
(termed R3 and R4; as shown in Fig. 3). The two training sequences A &
B together set up the higher-order structure governing how the in-
dividual relations cohered into sets: if R1 holds, R2 should hold; but if
R3 holds, R4 should hold, regarding the same set of 8 events. Partici-
pants were not told about this structure, only exposed to it. To test
whether participants spontaneously encoded this higher order structure
among relations, we asked how it affected learning in a third sequence.

In the third, ‘Test’ sequence, cued by a different object, again the
same set of eight events was shown, and two familiar individual cause-
effect relations were present. However, the pairing of these relations
was either Consistent or Inconsistent with the pairing structure pre-
viously seen in the two training sequences (following Collins & Frank,
2013). In the example in Fig. 3, the Consistent test sequence exhibited
both R1 and R2, individual relations both seen in Sequence A. The
Inconsistent sequence exhibited R1 and R3, two relations which were
equally familiar, but paired inconsistently—one came from Sequence A,
and the other came from Sequence B. We predicted that, despite no
instruction to attend to the pairing of relations, participants would have
spontaneously attended to their covariation, and because of this, their
learning of the individual relations in the test sequence would be af-
fected by their consistency with those pairings.

We measured how well participants learned the individual relations
with a forced-choice test, which asked them to choose between clips
showing typical predictive relations (cause followed by effect) vs aty-
pical clips (two unrelated events pairs; Fig. 1B). These learning probes
did not measure knowledge of how the relations went together; it
measured only knowledge of the individual relations; that is, which
individual events followed which others reliably. However, for the test
sequence, we expected that accuracy on these probes should be affected
by the way relations were paired (i.e., consistency condition)—that is, if
learners spontaneously encoded such relations in terms of higher-order
sets. Individual relations learned in an inconsistent set should be harder
to learn, because participants had different expectations about their
pairings from prior exposure. Thus, although the test always had a right
answer, participant's expectations that relations should continue to be
paired consistently would impair their accuracy in the inconsistent
condition. This would demonstrate that learning itself is inadvertently
affected by spontaneously made inferences about how relations cluster
together.

2. Method

2.1. Overview of procedures

Participants watched several short (4.5 min) videos depicting se-
quences of events while performing a cover task, in which they were
asked to determine if the event they were seeing was the common or
rare alternate (e.g., the blue bubbles were pink 10% of the time). This is
depicted in Fig. 1A. Each participant saw three types of sequences in
turn: two Training Sequences (A and B) and one Test Sequence (either
Consistent or Inconsistent; Fig. 3), which each featured different objects
and different predictive statistics among the same set of 8 events. Each
sequence was characterized by two strong predictive (‘cause-effect’)
relations: for example, in Sequence A, an object tilt might be nearly
always followed by a light flash, and color change nearly always fol-
lowed by stars, as shown in Fig. 3; neither of these held in Sequence B,
although tilt, light flash, color change and bubbles all still took place
with equal frequency. By varying only the statistical structure, rather

1 In these experiments, sets of rules differ in terms of which consequent is
more likely to take place. For example, if subjects are taught to press button 1
when a red square appears, and button 2 when a blue circle appears, they will
press buttons 1 and 2 more often than in a second context, where they learn to
press buttons 3 and 4. Grouping these rules together involves binding the rules,
but also binding the two consequent events (buttons 1 & 2).
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than which events appeared, we were able to provide participants with
information about which predictive relations co-apply in the same
context (i.e. co-vary). The third, Test Sequence, either maintained or
violated that pairing (between subjects). Our critical dependent mea-
sure was a forced-choice test probing knowledge of the specific rela-
tions in the sequences (Fig. 1B). On each trial, participants saw two
snippets of video, showing either a likely transition (cause followed by
effect) or an unlikely one (between two of the unrelated events—in fact,
the events that are related in different sequences), and had to select
which was more typical. Both individual cause-effect relations were
tested separately for each sequence, and the tests were given directly

after each sequence was shown. We then measured how well partici-
pants had learned the Test Sequence relations relative to their baseline
Training Sequence knowledge. We expected that performance would be
affected by condition: knowledge of the individual relations in the Test
Sequence should be worse in the Inconsistent than in the Consistent
condition, relative to baseline learning.

2.2. Participants

We recruited 490 participants using Amazon Mechanical Turk; all
were required to have an IP address in the United States and a 95%

Fig. 1. A. Illustration of the cover task, in which participants had to decide for each individual event whether it was common or rare. Events appeared in a continuous
stream, with the central object continually present as events took place on or around it. Below, images depicting animated event stimuli used in the experiment. The
top row shows the ‘common’ events, and the bottom row shows the ‘rare’ events. The rare alternates replaced their common versions 10% of the time, at random, for
purposes of the cover task. Object based events are the first four pairs on the left, with arrows indicating motion; Ambient events are the next four pairs. B. Illustration
of the forced-choice test, which presented participants with two, two-frame video clips, and asked them to select which was more typical. This figure is available in
larger, PDF format at https://osf.io/5autq/. A shorted demo of the experiment is available for web-view at https://www.sas.upenn.edu/~alesh/images/EXP6T/
TaskDemo.html and for download at https://osf.io/jr3u2/.

Fig. 2. Graphical depiction of the transition matrix
structure governing each sequence, for an example
assignment of events. Blue arrows indicate strong
(> 90% probability) transitions, while gray arrows
indicate equiprobable (~14% probability) transi-
tions, and no arrows indicates a < 5% probability
transition. Thus, two strong pairs were exhibited in
each sequence, which here are labeled R1 and R2. A
larger version of this figure is available at https://
osf.io/mc6uz/. (For interpretation of the references
to color in this figure legend, the reader is referred to
the web version of this article.)
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previous work approval rate. We excluded 37 participants because they
had previously participated in a related experiment or repeated this
one. An additional 70 were excluded for failing to pass an attention
measure (described below). Seven were excluded because of incomplete
data or because they reported a technical glitch during the experiment.
All excluded participants were replaced to complete a full set of
counterbalanced materials (see Stimuli). Of the 376 participants in-
cluded in the reported analyses, 51% were female (192/376) and the
average age was 33.5 (range of 19–68). Procedures were approved by
the Institutional Review Board of the University of Pennsylvania, and
all participants provided electronic consent. Compensation was $5,
with a bonus of up to $5 based on cover task accuracy (described
below).

2.3. Sample size determination, effect sizes, and piloting

In an incidental learning paradigm such as this one, a fairly large
amount of exposure is typically necessary for participants to learn a
complex set of context-varying relations; yet exposure time to the sti-
muli is also limited by participants' interest and fatigue. This means that
our manipulation of participants' experiences—and thus, the relevant
comparison—was minimal in each person, as were the number of
measurement trials. Since each participant learned two specific

predictive relations in each sequence, these could only be tested in a
limited number of ways. This means that both the level of exposure to
the materials, and the number of measurements of the resulting
learning, was very small in each individual.

The approach we took in this work was thus to measure the effect of
this minimal intervention in each individual, but with many individuals
(rather than collecting many measures in fewer participants). This
methodological choice was motivated by these inherent methodological
constraints. We first performed a pilot study (with n= 80), as described
below and in Supplemental Materials, which provided a measure of
effect size. Inevitably, the observed and expected effect size was small,
but allowed us to determine a necessarily sample size and plan analyses
a priori (with a small exception described below).

The final sample size of 376 (following exclusions) was based on
two considerations. Firstly, a power analysis using our pilot sample
indicated that a sample of 188 participants would be sufficient to obtain
80% power. We did obtain a significant effect for the predicted inter-
action effect of interest in an initial sample of 188, (F(1, 186) = 4.75,
MSE = 0.24, p = .031, partial η2 = 0.011). However, we saw order
effects in our baseline learning measures that created difficulties of
interpretation. To control for order effects, we swapped the order of the
relevant measures to fully counterbalance them, and added another 188
participants, which was effective in removing differences between the

Fig. 3. Illustration of the 4 unique rules and their distribution among the three sequences. All participants saw two training sequences (A and B), each of which
exhibited two pairs of relations (R1 & R2, or R3 & R4); specific stimuli were counterbalanced. Half of the participants then saw the Consistent sequence, which
exhibited both rules from Sequence A, while the other half saw the Inconsistent Sequence, which exhibited one rule from Sequence A (R1) and one rule from
Sequence B (R3). A larger version of this figure is available at https://osf.io/hyex5/.
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training stimuli. As we report below, the major finding remained sig-
nificant.

2.4. Stimuli

Sequences were composed of 8 animated event types (chosen out of
a pool of 10 for each participant), most of which are shown in static
form Fig. 1A; actual stimuli were GIFs. Each event type had a regular
version (top row) and a slightly visually distinct ‘oddball’ alternate,
bottom row of Fig. 1A, for the purposes of the cover task (described
below), but sequences were specified over the event types. Four event
types were object-based: tilting (the entire object rotated 10 degrees),
part moving (a detachable part on the object moved/rotated), color
changing (the object gradually changed into a different color), or being
tapped by a hand. The other six were ambient: the background changing
color; snowflakes falling; bubbles floating across the scene; confetti
swirling; a pair of leaves falling; and a burst of glitter. Each participant
saw 8 of the 10 event types, selected randomly. Additionally, static
“events” in the video streams showed the object still on the gray
background and were included to provide intermittent pauses. Each GIF
file comprised 12,100 ms frames (total length of 1200 ms), except static
(2400 ms).

To create the sequences, events were concatenated into continuous
sequences (“videos”). These were generated probabilistically using a
weighted walk, where the weights were specified by a pairwise tran-
sition matrix that specified the probability of any event following any
another. This pairwise transition matrix specified the predictive struc-
ture central to our design, shown graphically in Fig. 2 and numerically
in Supplemental Tables 1–4. All sequences followed this abstract
structure, but varied in how the participant's 8 specific event types were
assigned to it. The structure always specified two strongly predictive
event pairs, which formed the individual predictive relations: item two
in each pair (the “effect”) followed item one (the “cause”) with a 98%
probability. The cause could be followed by a static event with the
remaining 2% probability. The effect could repeat with a 1% prob-
ability but did not follow any other event. The remaining four events
were followed by static, each other, or the cause with a 14% prob-
ability. Thus, among the 8 events in a sequence, 2 were causes, 2 were
effects, and 4 were weakly predictable (random). All events had equal
frequency, as specified by the stationary distribution of the transition
matrix.

To ensure each generated sequence was a good reflection of the
requested transition matrix, the walks were generated iteratively and
verified until they met several criteria: no two events differed in fre-
quency by>10 instances (~2%), the actual cause-effect transition
strength was above 90%, and the other transitions occurred with a
probability between 5 and 30%. The obtained transition matrix, aver-
aged across all subjects' walks, is shown in Supplemental Tables 1–4.

After the sequences were generated, the rare alternates were shown
instead of the common event versions with a 10% probability, while
ensuring that the number of oddballs was equated within 2 instances
across the event types.

In the 3 distinct sequences, event types were shown with a different
object present (yellow, blue or green; Fig. 3). Sequences also varied in
how the 8 specific events were assigned to the same abstract struc-
ture—that is, which events were ‘causes’, ‘effects’, or random events.
Because each sequence had two strong predictive pairs, it had two
causes, two effects, and four random events. This created four distinct
predictive relations (R1 and R2 for Sequence A, and R3 and R4 for
Sequence B). In the third, Test Sequence, we used R1 and R2 in the
Consistent condition, and R1 and R3 in the Inconsistent condition (see
Fig. 3).

The specific event types assigned to the distinct roles in the four
relations were selected for four yoked participants at a time. These
assignments were chosen randomly, with the constraint that any of the
four types of object-based events (tilt, part-move, color change, or tap)

could serve as one of the four causes, and any four of the six ambient
events could serve as one of the four effects (with the other two then not
shown). An additional constraint was that tilt and part-move could not
serve as causes within the same object, as they could be confusable. The
rationale for the design overall was to mimic an aspect of the real
world, in which the behavior/actions of objects lead to outcomes in the
environment, and multiple relations might apply to the same object.

The relations shown in the Test Sequence varied between partici-
pants with respect to the relations shown in the Training Sequences (A
and B). In the Consistent condition, the Test Sequence had the same
cause-effect relations as Sequence A (R1 & R2). In the Inconsistent
condition, it exhibited one relation from Sequence A (R1) and one re-
lation from Sequence B (R3). These assignments were thus highly sys-
tematic and always followed this abstract structure: i.e., Sequence A
always matched the Consistent Test Sequence. For this reason, the
specific objects assigned to Sequence A and B and their order of pre-
sentation were counterbalanced across conditions (green or blue); The
Test Sequence always used the yellow object. For Sequences A and B,
three videos were created to be 225, 200, and 200 events in length,
each adhering to the sequence properties described earlier. The Test
Sequence was shown over two videos, of 225 and 200 events in length.

For the four yoked participants, half had the Consistent Test
Sequence and half the Inconsistent Test Sequence. Otherwise, they saw
identical materials for the Training Sequences (including the randomly
generated walks). Additionally, the event assignments for R2 and R3
were counterbalanced across conditions, within the yoked set: they
were exchanged so that if one pair of participants saw color-chan-
ge–stars for R2 and hand-tap–bubbles for R3, as depicted in Fig. 3, then
another pair saw hand-tap–bubbles for R2, and color-change–stars for
R3. This was because R2 and R3 are the critical rules differing between
conditions in the Test Object (see Fig. 3). Thus, the identity of the
events comprising the Test Sequence relations was perfectly counter-
balanced across conditions.

2.5. Procedure

Participants were randomly assigned both to an experimental con-
dition (Consistent vs. Inconsistent), and to a counterbalancing set. The
experiment was implemented using JavaScript and presented in a web-
browser, via the Mechanical Turk interface. Participants could access
the experiment during the daytime, between 10 am and 7 pm EST, and
had to complete the procedure within 2 h. The average duration of the
procedure was 77.84 min.

The participants' task was to learn to identify the common vs. rare
versions of the 8 different event types in the videos (top vs bottom row
in Fig. 1A); this was fixed across participants and thus constant across
conditions. At the start, they were shown a static image depicting each
of the 16 events and how they paired into rare/common alternates, but
not which were which. Following a preview phase (the first 75 events of
the first video of the first object, about 1 min), they were asked to press
‘o’ if the event was common and ‘r’ if it was rare, as soon as the event
began.

To ensure that participants had understood what was meant by an
individual ‘event’ in the continuous stream, and also that the browser
was able to register their key responses, they performed a response-
practice task following the preview, in which they pressed the space bar
every time a new event started. They were shown a random sub-
sequence of 20 events from the first video and could only move forward
once they achieved at least 75% accuracy. Failure on this could be due
either to miscomprehension or to technical glitches in registering re-
sponses within the time window of the trial; either was grounds for not
proceeding. Participants not passing this criterion after ten attempts
were compensated but not allowed to proceed to the rest of the task.

Participants then performed the rare vs. common identification task.
Each Sequence was shown as a set of consecutive videos (three videos
for Training Sequence A, three videos for Training Sequence B, and two
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videos for the Test Sequence). Each video took about 4.5 min to play.
After each video, overall accuracy and percent of trials responded to
was displayed, with a reminder that low accuracy could be due to a low
overall response rate. The videos for Training Sequences A and B were
first (in counterbalanced order across conditions and event assign-
ments), followed by the Test Sequence, though these were not labeled
differently for the participants. A new preview was shown prior to the
start of each new Sequence.

After completing the set of videos for a given Sequence, participants
were given a forced-choice familiarity test to assess their learning of
that Sequence. On each trial, two videos were played consecutively side
by side, which each showed a mini-sequence of two events. Participants
were instructed to choose which video was more typical or familiar by
selecting a button below each one; another button allowed them to
replay the two videos in that trial. They had to make a selection to
continue; no feedback was given. The questions of interest always
presented one strong (high transition probability) pair and one weak
(low transition probability) pair.

There were three types of forced-choice questions. The ‘critical’
questions asked participants to compare the strongly predictive, typical
two-event sequences (i.e., a cause followed by its effect, for example tilt
followed by light for Sequence A) to event pairs that were atypical
(~14% transition probability), but formed strongly predictive pairs
during the other sequence. In this example, we would show hand tap
followed by snow, events which were a cause-effect pair in Sequence B.
The central object was always shown in the test items, to cue the right
sequence; and tests were presented immediately after sequence ex-
posure. For each sequence, there were four critical questions (two for
each cause-effect pair). We expected that our effect would hold on these
critical questions, based on our findings from the pilot experiment (see
Supplemental Material).

Other questions were shown in order to avoid cuing participants to
the actual strong pairs, by balancing the number of times the weak pairs
(i.e., incorrect options) were shown, and to maintain methods con-
sistency with the pilot experiment. These included four questions which
compared the strong pairs to pairs which were always weak (e.g., the
cause followed by a different ambient event). Two questions asked
participants to compare two strong pairs to each other (e.g. R1 to R2 for
Sequence A); these questions did not have a correct answer. Finally, 16
questions presented the weak pairs from the critical questions com-
pared to each other, simply to balance the number of times the weak
pairs were presented with the strong pairs. Thus, filler questions en-
sured that correct videos for the hard questions were not presented
more often than the incorrect videos, and so that the same event pairs
were tested across all sequences. This created 32 total questions.

Although the Training Sequence videos used in the two conditions
were identical, it was important to ensure that the generated transition
matrices did not, by chance, differ between the Consistent and
Inconsistent Test Sequences in ways that would make the critical
questions inherently easier or more difficult for one than the other. The
transition probability of the strong pairs, minus the transition prob-
ability of the weak pairs, for the critical questions were highly similar
between the Consistent and Inconsistent Test Sequences (Consistent
M = 0.842; Inconsistent, M = 0.845).

It should be noted that following the first test, participants could
anticipate that such tests would appear during the experiment and this
could have motivated them to look for cause-effect relations. However,
there was no task-based incentive to track how pairings co-varied across
sequences.

We additionally measured verbalizable access to what participants
learned. These measures were included because it would seem even
more convincing that relational sets are learned spontaneously and
affect future learning inadvertently if participants cannot overtly de-
scribe the structure they learned and thus would be less likely to stra-
tegize about their responses to forced-choice tests in such fashion.

After completing the cover task and forced-choice test for both

Training Sequences, participants were asked to “describe anything you
learned about each of the two objects you saw,” in a text box (freeform
response question). Following the Test Sequence, they were ad-
ditionally asked the following freeform response questions: (1) “During
the videos (not the questions), did you notice any patterns in the order
of events? Did any events seem to follow each other more than ran-
domly, for any of the objects?”; (2) “Did the videos about each of the
objects differ from each other, in terms of which events occurred and in
what order?”; (3) “Did you notice any similarities or differences be-
tween the first two videos and the last one?” Participants were also
asked to note any technical glitches they encountered, and enter their
demographic information.

2.6. Scoring and attention measures

Scoring of the freeform responses was done as follows: One score
tabulated how many of the four predictive relations the participant had
correctly described in their responses (0–4). The second score indicated
whether participants were aware of the overall structure of the relations
among the sequences (0 or 1). Participants were given a score of 1 if
they explicitly noted that one or more relations applied to some se-
quences but not all of them, or, for those in the consistent condition, if
they mentioned that Sequence A and the Test Sequence were more si-
milar to each other than they were to Sequence B.

Performance on the cover task (common vs. rare decision) was used
as a measure of attention. Participants with lower than a 60% overall
accuracy on the task were excluded from the analysis as described in
Participants.

Performance on the cover task also determined the participant's
performance bonus. For each of the 8 individual videos, accuracy of
75% or above was awarded $0.50, and catching 25% of the rare events
across the experiment was awarded another $1.00, for a maximum of
$5.00.

All statistics reported are two-tailed, planned comparisons, unless
otherwise indicated, with an alpha level of 0.05. Effect sizes are re-
ported for hypothesis-relevant analyses.

3. Results

Participants in the two conditions had comparable performance on
the cover task in terms of overall accuracy (Consistent group:
M = 84.5%, CI [83.46, 85.95]; Inconsistent group: M = 85.1%, CI
[83.75, 86.29]; p = .558), average hit rate (Consistent group:
M = 40.5%, CI [37.19, 43.85]; Inconsistent group: M = 41.3%, CI
[38.13, 44.61]; p = .753), and false alarm rate (Consistent group:
M = 6.3%, CI [5.25, 7.17]; Inconsistent group: M = 5.53%, CI [4.69,
6.61]; p = .247).

Learning of the individual predictive relations for each sequence
was assessed with a force-choice test, presented in between blocks of
the cover task. On the questions of interest, participants had to choose
between sequence snippets depicting a strong (highly likely) pair of
events for that sequence, and a pair that was weak (unlikely) for that
sequence but strong for others. Participants in both groups showed
above-chance accuracy on this test for each sequence (Sequence A:
Consistent group, M = 60.37%, SE = 2.21, CI [0.56, 0.65], t
(187) = 4.70, p < .001; Inconsistent group, M = 60.24%, SE = 2.19,
CI [0.56, 0.65], t(187) = 4.68, p < .001; Sequence B: Consistent
group, M = 55.85%, SE = 2.05, CI [0.52, 0.60], t(187) = 2.86,
p = .005; Inconsistent group: M = 59.84%, SE = 2.19, CI [0.56, 0.64],
t(187) = 4.48, p < .001; Test Sequence, Consistent group:
M = 60.77%, SE = 2.25, CI [0.56, 0.65], t(187) = 4.79, p < .001;
Inconsistent group: M = 55.45%, SE = 1.64, CI [0.52, 0.59], t
(187) = 3.32, p = .001).

This knowledge of predictive relations was largely not verbalizable.
When asked to describe any predictive patterns they noticed, partici-
pants correctly identified an average of 0.75 relations out of a possible
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4. Additionally, only 8 of 376 participants (2%) correctly described the
structure of how the relations differed between sequences. This is un-
likely due to any unwillingness of participants to reveal this knowledge.
An in-lab pilot sample (Supplemental Materials) exhibited a similar lack
of verbalizable access, when probed with active verbal debriefing fol-
lowing the experiment. This suggests that participants were unlikely to
be responding to forced-choice tests on the basis of a deliberative
strategy making explicit use of knowledge of how the relations co-
varied.

The analysis of interest was whether condition—the consistency of
the Test Sequence with the Training Sequence relational structure—-
affected forced-choice test accuracy on individual relation knowledge
for the Test Sequence, over and above any differences between groups
in the Training Sequences. We thus tested whether the Consistent group
was more accurate than the Inconsistent group on the Test Sequence,
relative to their difference in performance on the Training Sequences.
Training Sequences A and B were collapsed to reflect overall training
accuracy. A two-way ANOVA with the factors Condition (inconsistent,
consistent) and Sequence Type (training, test) revealed no effect of
Sequence Type (F(1, 374) = 0.38, MSE = 0.02, p = .539) or Condition
(F(1, 374) = 0.82, MSE = 0.05, p = .367), but a significant interaction
(F(1, 374) = 5.33, MSE = 0.25, p = .022, partial η2 = 0.014). These
results are shown in Fig. 4. The significance of the interaction effect was
confirmed with a permutation test for ANOVA, p = .003. The simple
effect of Condition on Test Sequence was marginally significant (t
(374) = 1.91, p = .057, d= 0.20; permutation test p = .087). This test
is less appropriate than the interaction, however, because it does not
take into account individual differences in learning ability (which
varies widely). Although statistically robust, it must be noted that the
effect size of the interaction was small; a Bayesian analysis of the in-
teraction yielded a Bayes factor of 1.426, indicating positive but not
strong evidence. As noted in Methods, our design necessitated that each
participant had a very brief exposure to the complex learning manip-
ulation; real-life experience can be more substantial. Our confidence in
the statistically reliability of the effect is increased by the a priori design
based on pilot data.

Post-hoc t-tests were used to probe the nature of the interaction. In

the Consistent group, these revealed no significant difference between
the Training Sequence score (M = 57.85%, CI [55.10, 60.59]) and the
Test Sequence score (60.51%, CI [56.09, 64.92]), t(187) = −1.10,
p = .273, permutation test p = .311. In contrast, in the Inconsistent
group, the Training Sequence score (M = 60.31%, CI [57.33, 63.29])
was significantly higher than the Test Sequence score (M = 55.72%, CI
[52.44, 58.10]), t(187) = 2.30, p = .023, d = 0.168; permutation test
p = .0418. Thus, the interaction indicated a decline in performance in
the Inconsistent group, but no reliable change in the Consistent group.

Additional tests were performed to rule out alternative explanations
of our results. First, we confirmed that there were no differences be-
tween the two Training Sequences with an 2 Sequence Type (Sequence
A, Sequence B) by 2 Condition (consistent, inconsistent) ANOVA, which
revealed no effect of Condition (F(1, 374) = 0.88, MSE = 0.07,
p = .349) or Sequence type (F(1, 374) = 1.19, MSE = 0.11, p = .277),
nor any interaction (F(1, 374) = 0.83, MSE = 0.08, p = .362), and was
confirmed with permutation tests (p's > 0.20). Thus, it was not the
case that the Consistent group had, by chance, better performance on
the Training Sequence which matched their Test Sequence.

Second, we wished to rule out that the groups differed in their
Training Sequence accuracy on the specific predictive relations that
differed in their respective Test Sequences. As shown in Fig. 3, the
Consistent Test Sequence was shown with R2, while the Inconsistent
Test Sequence was shown with R3. Even though the specific events
assigned to these relations were perfectly counterbalanced, it is possible
that, purely by chance, the groups differed on their knowledge of these
particular relations at training. We found this was not the case: there
was no reliable difference between the Consistent group's performance
on R2 at training (M = 64.01%, CI [58.48, 69.72]) and the Inconsistent
group's performance on R3 at training (M = 60.37%, CI [54.68,
66.06]), t(187) = 0.92, p = .359; permutation test p = .194. Thus, the
effects of condition cannot be explained by differences in knowledge of
the specific individual predictive relations during training.

4. Discussion

Our theories about the world contain not just individual predictive
relations, but also knowledge about which relations hang together.
Here we investigated whether relations among relations are sponta-
neously acquired during exposure to events, and whether this knowl-
edge influences later learning. Indeed, we found that observers register
how individual predictive relations cohere into higher-order, context-
dependent sets, and that this knowledge guides their expectation that
these relations will continue to cohere this way in the future—affecting
how they process evidence to the contrary. This suggests that binding
relations to other, co-varying relations is an intrinsic manner in which
the mind encodes the world.

We ensured that learning was over relations, rather than the events
composing them, by presenting the same events in each context, but
varying which were part of predictive relations (Fig. 3). This follows the
classical definition of relational representations, in which relations vary
independently of the elements (Gentner, 1983; Markman & Gentner,
1993). We describe this learning as spontaneous, because there was no
task demand to learn pairings among the relations. Furthermore, these
higher order representations of relational sets inadvertently affected
later learning accuracy for individual relations: having learned how
pairs of relations co-apply across two contexts, learning was worse
when a third context violated this pairing than when it upheld it. This
extends prior work on explicit reasoning about how relations cohere
(Gershman, 2017; Schulz et al., 2008; Waldmann et al., 2010) to show
that it is an automatically operating part of our how we learn even in
absence of deliberative reasoning. It is also in line with work in other
domains, such as reinforcement learning, showing that correlational
structure is inferred even when costly and unnecessary (Collins, 2017;
Collins & Frank, 2016).

Our findings have relevance for theories of learning more broadly.

Fig. 4. Results, showing percent accuracy on the critical questions in the
forced-choice test by Condition and Sequence type. Error bars indicate 95%
confidence intervals using the t distribution. Dotted line depicts accuracy ex-
pected by chance (50%). The interaction demonstrates that while Inconsistent
group participants performed worse on the Test Sequence than their Training
Sequence baseline, the Consistent group did not show such a difference.
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Predictive learning is the backbone of associative learning (Shanks,
1995); and human and non-human animals alike infer the context-
sensitivity of relations—for example, that a tone can predict a shock in
one room but not another. In certain circumstances, it would appear
that contexts serve as ‘occasion setters’ (Bouton & Swartzentruber,
1986; Urcelay & Miller, 2014): animals learn not that a specific room
predicts the shock, but rather, that it modulates the tone-shock relation.
In these circumstances, it could be assumed that the room is a cue to-
ward the relation; analogously, in our task, objects can be seen as
context cues in just this way. Indeed, what cue serves as a ‘context' may
well be any stimulus at the top of a predictive hierarchy that predicts
more local variation among events, and this role could be statistically
inferred (Collins & Frank, 2016; Gershman, 2017). Importantly, parti-
cipants need no overt cue for context: the relations which hold in it are
themselves cues. For example, in our task's Test Sequence, no object
cues were available; participants had to use one relation to anticipate
the other.

Analogous to this situation is the acquisition of task sets in the re-
inforcement learning literature. When observers learn multiple sti-
mulus-reward contingencies, they track how these contingencies co-
vary. For example, if at the same time A is rewarding while B is pun-
ishing, and at other times these fully reverse, monkeys need only ob-
serve one relation (e.g., that A is rewarding) to retrieve the other; no
overt cue apart from the predictive statistics themselves is necessary
(Saez, Rigotti, Ostojic, Fusi, & Salzman, 2015). We show that relation-
relation binding also takes place in purely observational learning, and,
again, not as a deliberative strategy where such inferences are bene-
ficial, but as a natural outcome of how the mind encodes observed
events.

How can we describe the computations the mind performs to ac-
complish the binding of relations to other relations? At minimum,
learners must determine that relations co-vary in systematic ways, and
create a latent structure which captures this co-variation. Finally, in a
new context, if a similar individual relation is observed to one already
attached to a latent variable, its associated relation(s) can be retrieved
and anticipated. The first two operations can be described using models
of structure learning, in which probabilistic inferences are made about
how relations co-vary and how many clusters of co-varying relations
there might be (Collins & Frank, 2016; Gershman & Niv, 2012; Kemp
et al., 2010). However, recognizing when a new relation is ‘similar’ to
previously learned ones can be more or less trivial. In our case, re-
cognizing a tilt-light relation in the context of a new object is possible
by the visual similarity of these events. But sometimes relations hold in
a way that conflicts with visual similarity. In those cases, it is possible
that a process of analogical mapping is required to enable inference
(Falkenhainer, Forbus, & Gentner, 1989; Gentner, 1983).

A prior step to these is also important. To either map or cluster
relations, there must be explicit representations of relations. In our task,
it is not enough to keep track the covariation among visible events,
since all events occur equally often in all contexts; learners must track
the covariation among relations per se. One must therefore suppose a
mechanism which creates new latent variables (in a Bayesian frame-
work) or hidden nodes (in a connectionist network framework) which
represent the relations themselves (i.e., a variable that represent the
correlation between A & B, separately from the stimuli identities). The
literature on acquired equivalence suggests such hidden nodes are a
natural outcome of predictive learning using a multi-layer autoencoder
network (Gluck & Myers, 1993; Honey, Close, & Lin, 2010).

Thus, at this general level of description, our data support the
possible existence of a mechanism that forms latent variables to re-
present relations, makes unsupervised inferences regarding how those
relations co-vary, and supports the recognition of similar relations in
new contexts in order to retrieve those associates. In future work, we
hope to adjudicate between specific alternative implementations of
such mechanisms. Moreover, the observation that learning was in-
cidental and not easily verbalizable raises the question of what reliance

it may or may not have on working memory or other executive re-
sources, another important topic for future research. Finally, although
the relations we studied here were predictive, which are critical and
pervasive across many learning tasks, it is possible that different phe-
nomena exist among other relations, such as those representing relative
features (brighter than, larger than; Corral & Jones, 2014) or spatial
properties (below, above). If similar inferential architectures underlie
inference of predictive and other relations, then similar principles may
apply. Indeed, our work extends the finding of Corral and Jones (2014)
that pairs of relations among items are better learned when one of the
items is involved in both relations (e.g., A & B and B & C) than when
items are not shared. We show here that relations that co-vary con-
sistently, without a shared item, also have an advantage.

More broadly, our claim is that this form of learning is relevant to
theory-building. Do the resulting representations have the character of
relations composing theories? Have our learners now acquired a
‘theory’ of two object kinds, composed of their two relations?

One important property of theories is that their descriptions of the
world are in a different "vocabulary" than the evidence (Gopnik &
Meltzoff, 1997). In our theory of mind, human behavior is not re-
presented as reaches of arms and direction of gaze, but as thought,
desire, and belief. The computational work on structure learning cited
above offers one formalization of what this means: that theoretical
terms are latent variables postulated to explain the evidence regarding
how clusters of events or properties cohere (Collins & Frank, 2013;
Gershman, 2017; Gershman & Niv, 2012). A latent variable does not
refer to an observable event, but rather, to a relation among ob-
servables: it captures the fact of their co-variation. One possibility is
that elements in theories are exactly such latent constructs, which is
why they seem to be in a “different vocabulary”: a belief explains the
coherent co-variation between certain classes of actions. Under this
account, our participants created novel latent variables for each of the
training sequences, which captured the principle that their two rela-
tions hung together. This latent variable was responsible for the ex-
pectation that they would hang together later, and thus served as an
element in the theory.

Carey (2009) argues that representations inaccessible to awareness,
like those we describe, are not conceptual, nor theories. It is thus pos-
sible that what we describe are only proto-theories until they are
brought into awareness. We nonetheless argue that these representa-
tions are highly useful for theory building, particularly for intuitive
theories that seem to be formed without substantial deliberative rea-
soning.

This is not, in any way, a deflationary account of theorizing. It is
instead an inflationary account of incidental learning, in line with de-
monstrations of its ability to generate structured representations of
sorts useful for learning linguistic syntax or morphology (Endress,
Cahill, Block, Watumull, & Hauser, 2009; Fitch & Hauser, 2004;
Friederici, Bahlmann, Heim, Schubotz, & Anwander, 2006; Gerken,
2006; Gomez, Gerken, & Schvaneveldt, 2000; Kovács & Mehler, 2009;
Marcus, Vijayan, Rao, & Vishton, 1999; Morgan & Newport, 1981).
There are both parallels and differences between the kind of learning
described here and the mechanisms supporting grammar learning in
natural or artificial languages. Experiments in artificial grammar as
cited above have demonstrated the ability of infants and adults to learn
complex relations such as the difference between an AAB pattern (first
two elements repeat) vs. ABA (the first and last elements match); and
AnBn patterns, where the same number of A as B elements to follow
each other (v.s. AnBm patterns). Such relations require a ‘phrase struc-
ture’ grammar, more complex than what is needed to learn relations
based on transition probabilities (as here), which can be explained with
a simpler, finite state grammar (Fitch & Friederici, 2012; Fitch &
Hauser, 2004; Hauser, Chomsky, & Fitch, 2002). Our ‘grammar’, how-
ever, was complex in another important sense: it required representing
the co-occurrence of different relations over the same events across
contexts, not just the individual relations. This could be captured by
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two finite state grammars, each specifying two different relations over
the same events; these grammars might then be selected based on
context (e.g., Gebhart, Aslin, & Newport, 2009; Kovács & Mehler,
2009). The relation between learning grammars required by natural
languages, and theories relating predictive structures among events, is a
fascinating direction for future research.

5. Conclusion

How theories are learned is a major challenge for cognitive science
(Gerstenberg & Tenenbaum, 2017; Tenenbaum et al., 2011). We tackle
just one facet of theories: the coherence among multiple predictive
relations. We demonstrate that human learners have an inclination to
encode higher order relations—how pairs of individual relations
themselves cohere—even when these are incidental to the task, and we
show that this forms part of the very process by which the mind learns
about the world. We argue that this inclination may be a mechanism
which spontaneously generates novel constructs to explain observa-
tions. It thus forms an important part of our cognitive repertoire, and
may explain how we so readily generate intuitive theories.
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