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Anna	Leshinskaya			Research	Statement	
	
Imagine	a	Martian	who	encoded	every	event	as	unique:	each	time	the	sun	set,	he	stored	a	new	
occasion	in	memory	and	never	created	the	concept	sunset	to	group	them.	And	although	each	sunset	
was	followed	by	a	cold	night,	he	never	encoded	the	predictive	relation	between	these	events	and	
never	asked	if	it	is	causal.	What	makes	the	human	mind	different?	We	habitually	and	instinctively	
summarize	our	experience	and	build	predictive	and	causal	models	in	long	term	memory.	These	
habits	of	mind	determine	how	we	come	to	understand	the	world,	and	are	essential	for	our	ability	to	
predict,	understand,	and	form	knowledge	about	the	regularities	in	our	experience.			
	
	My	research	program	investigates	these	cognitive	faculties	and	their	neural	basis.	To	do	this,	I	use	
learning	experiments	with	well-quantified	artificial	stimuli,	computational	models	of	learning	
algorithms,	and	representationally	precise	neuroimaging	analyses.		I	integrate	insights	from	three	
fields—causal	learning,	episodic	memory,	and	semantic	memory—to	gain	an	integrative	
understanding	of	how	we	transform	observed	experience	into	patterns	of	relations	in	long	term	
memory.	Ultimately,	I	seek	to	explain	how	the	nature	of	our	semantic	memory	is	a	product	of	how	
we	spontaneously	learn	about	the	world.		
	
The	neural	organization	of	long-term	memory					
	
Past	Work		
	
In	my	doctoral	research,	I	developed	a	theoretically	motived	methodology	for	measuring	
conceptual	representations	with	fMRI	(Leshinskaya	&	Caramazza,	2014,	2015,	2016;	
Leshinskaya,	Contreras,	Caramazza,	&	Mitchell,	2017;	Leshinskaya,	Wurm,	&	Caramazza,	
2020;	Leshinskaya	&	Lambert,	in	press).	My	goal	was	to	understand	the	large-scale	neural	
organizing	principles	underlying	some	of	the	most	high-level	aspects	of	cognition,	characterized	by	
broad	generalization	and	abstraction.	Contrary	to	dominant	theories	in	the	field,	I	found	that	
specializations	among	semantic	areas	were	not	aligned	with	divisions	among	sensory	or	motor	
systems,	such	as	modality,	but	rather	appeared	to	follow	more	abstract	factors.	However,	it	became	
clear	to	me	that	understanding	the	nature	of	representations	in	conceptual	neural	areas	would	be	
limited	without	understanding	what	they	encode	about	experience,	something	that	is	inaccessible	
for	familiar	concepts	learned	outside	the	lab.	Thus,	I	began	to	investigate	how	we	build	new	
conceptual	knowledge	from	experiences	I	could	control	and	quantify.	
	
One	of	my	core	premises	is	that	relational	structure	is	a	central	feature	of	many	everyday	concepts	
and	is	a	key	way	in	which	our	concepts	diverge	from	sensory	representations.	For	example,	kicking	
involves	a	foot	and	an	object,	but	not	in	just	any	fashion:	the	foot	has	to	make	contact	with	the	
object	and	not	the	other	way	around.	The	concept	communication	denotes	a	contingency	between	
two	speakers’	utterances;	not	just	two	people	talking.	Understanding	the	meaning	of	these	concepts	
(and	classifying	observations	as	belonging	to	them)	thus	relies	on	recognizing	if	the	entities	are	
arranged	in	the	right	ways	with	each	other—as	roles	and	fillers,	agents	and	patients,	or	causes	and	
effects.	This	sophisticated	inferential	capacity	is	a	hallmark	of	high-level	cognition	and	allows	for	its	
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incredible	feats	of	generalization:	the	specifics	of	the	entities	talking	contingently	can	be	arbitrarily	
diverse,	yet	allow	for	us	to	recognize	communication.		
	
We	understand	very	little	about	how	relationally	structure	information	is	learned	and	represented,	
not	to	mention	generalized.		The	focus	in	much	of	semantic	cognition	has	been	on	categorization:	
how	we	determine	which	observations	belong	in	which	class.	However,	an	open	challenge	is	
explaining	how	we	learn	and	recognize	relational	properties,	which	are	often	required	as	inputs	to	
class	membership.	To	tackle	this	question,	I	have	adapted	paradigms	from	statistical	learning	and	
causal	learning,	which	I	combine	with	dynamic	animated	stimuli	that	lend	themselves	to	
naturalistic	interpretation	as	objects	and	events	within	a	flow	of	experience.	I	create	sequences	of	
such	events	with	underlying	predictive	or	statistical	relations	to	study	how	relational	information	is	
learned	and	used	in	concept	formation.	By	manipulating	the	structure	of	predictive	relations	and	
controlling	other	factors,	I	have	measured	how	relational	structure	influences	conceptual	
judgments	and	the	responses	of	neural	areas.	
	
In	this	line	of	work,	I	have	found	that	conceptual	judgments	about	objects’	causal	properties	depend	
on	a	particular,	hierarchical	structure	of	event	relations	involving	those	objects	(Leshinskaya	&	
Thompson-Schill,	2019).	It	is	not	obvious	how	we	come	to	recognize	causal	attributes,	such	as	the	
fact	that	kettles	which	boil	water	or	that	coffee	keeps	us	alert,	because	these	properties	are	not	
transparent	from	the	physical	traits	of	these	objects,	nor	follow	a	simple	co-occurrence	pattern:	
kettles	don’t	appear	very	frequently	with	boiling	water	(they	are	inert	most	of	the	time),	nor	do	
coffee	makers	appear	around	coffee	any	more	than	mugs	do.	Instead,	I	hypothesized	that	causal	
attribution	to	objects	relies	on	a	hierarchical	encoding	of	predictive	relations:	objects	obtain	causal	
properties	by	acting	as	contexts	for	lower-order	event	relations.	For	example,	if	one	is	using	an	
electric	kettle,	then	a	button	press	(event	A)	causes	water	to	boil	(event	B).	The	kettle	causes	water	
to	boil	because	it	enables	this	A-B	event	relation—not	because	its	presence	predicts	the	water	
boiling	event.	This	hypothesis	was	right:	I	found	that	participants	attributed	causal	properties	to	
novel	objects	on	the	basis	of	such	higher-order	event	relations	specifically.	
	
I	also	discovered	that	category-selective	responses	in	lateral	temporal	cortex	can	be	elicited	by	
relational	structure	alone,	controlling	for	shape.	Specifically,	I	tested	whether	areas	of	the	brain	that	
respond	preferentially	to	images	of	familiar	tools	(Chao	&	Martin,	2000;	Mahon	et	al.,	2007)	also	
respond	to	novel	objects,	to	the	extent	that	those	novel	objects	have	a	causal	effect	on	other	events	
(Leshinskaya,	Bajaj	&	Thompson-Schill,	under	review).		Participants	saw	novel	objects	
embedded	in	distinct	event	animations	prior	to	fMRI	scanning.	Some	objects	were	“causers”,	in	that	
they	moved	prior	to	the	appearance	of	an	event	in	the	environment	(e.g.,	snowflakes),	while	others	
were	“reactors”,	which	moved	following	those	events.	Shape	and	motor	experience	were	fully	
controlled.	When	participants	later	viewed	pictures	of	these	objects	during	fMRI,	I	observed	greater	
activation	in	response	to	causers	than	reactors	in	tool-selective	parts	of	lateral	temporal	cortex	(as	
identified	with	familiar	tools	vs.	non-tool	images).	Together	with	accumulating	evidence	elsewhere	
(Leshinskaya,	Wurm	&	Caramazza,	2020),	this	suggests	that	relational	structure	is	a	factor	in	the	
cognitive	and	neural	representations	of	semantic	domains.	My	hypothesis	is	that	this	is	one	major	
way	in	which	the	organization	of	semantic	memory	diverges	from	sensory	and	perceptual	systems.		
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Along	similar	lines,	I	investigate	how	newly	learned	relational	information	is	neurally	represented,	
with	a	view	to	understanding	how	new	learning	can	serve	to	update	semantic	knowledge	systems.	
Because	the	neural	basis	of	memory	changes	with	time,	I	looked	at	remote	memory	for	information	
learned	one	week	prior	(Leshinskaya	&	Thompson-Schill,	2020).	Unlike	recently	learned	
relational	memory,	which	is	typically	found	in	medial	temporal	areas	(Schapiro,	Kustner,	&	Turk-
Browne,	2012),	I	found	evidence	of	relational	memory	in	cortical	areas	including	the	middle	
temporal	gyrus	(MTG),	a	lateral	temporal	area	in	the	vicinity	of	sites	previously	implicated	in	
semantic	memory	for	actions	and	events.	This	result	builds	a	critical	connection	between	newly	
encoded	experiences	and	plasticity	in	long-term	memory	sites.	Furthermore,	I	found	that	only	MTG	
representations	showed	relational	generalization:	they	were	more	similar	among	contexts	in	which	
the	events	were	related	in	the	same	ways	than	for	contexts	in	which	events	were	related	in	
different	ways,	controlling	for	their	surface	features—suggesting	a	truly	semantic	function.	Finally,	
I	found	that	these	relational	representations	were	strikingly	dissociated	from	representations	of	
the	visual	characteristics	of	the	stimuli,	which	were	localized	more	posteriorly	(reliably	so	across	
participants).	On	the	basis	of	these	results,	I	argue	that	MTG	is	particularly	specialized	for	
representing	relationally	complex	information	in	semantic	memory.	This	dovetails	with	its	well	
documented	role	in	understanding	action	and	event	concepts,	which	are	often	relationally	complex	
(Leshinskaya,	Wurm	&	Caramazza,	2020).	I	anticipate	that	this	contrasts	with	the	role	of	other	
semantic	areas:	for	example,	areas	in	the	anterior	temporal	lobe	appear	to	specialize	in	cross-modal	
feature	binding	rather	than	relational	complexity.		
	
Current	&	Future	Work		
	
Encoding	recent	experiences	is	a	primary	function	of	sites	in	the	medial	temporal	lobe	(MTL).	
However,	MTL	sites	play	only	a	short-term	role	in	the	accumulation	of	knowledge,	which	comes	to	
rely	on	other	areas	over	time;	these	‘other	areas’	are	often	described	diffusely	in	prior	work,	leaving	
a	large	gap	between	work	in	episodic	and	semantic	memory.	Yet,	understanding	how	episodic	
encoding	may	serve	to	update	semantic	memory	promises	to	illuminate	the	pathways	for	
constructing	our	knowledge	of	the	world	from	experience.	I	seek	to	understand	the	principles	and	
specializations	among	these	systems	by	relating	the	specific	roles	of	different	MTL	sites	for	
encoding	new,	unique	experiences	with	the	role	of	diverse	long-term	memory	sites	that	are	
eventually	updated	with	it.		My	current	work	develops	and	tests	theories	of	specializations	among	
these	systems	and	how	they	work	together	to	build	semantic	knowledge.		
	
Within	this	line	of	inquiry,	I	recently	identified	relational	memory	content	in	a	specific	part	of	MTL	
(antero-lateral	entorhinal	cortex,	alERC)	immediately	after	learning	and,	one	week	later,	similar	
relational	memory	content	in	a	specific	cortical	site	in	MTG	(Leshinskaya,	Nguyen	&	Ranganath,	
2021).	These	two	areas	showed	similar	signatures	of	memory	encoding	for	the	same	information,	
but	at	different	times.	This	could	suggest	that	learning	mechanisms	in	entorhinal	cortex	serve	to	
build	semantic	memory	in	MTG.	This	connection	would	seem	principled	based	on	the	role	of	these	
two	areas	in	encoding	temporal	relations	in	ERC	and	the	semantics	of	actions	and	events	in	MTG.	I	
plan	to	test	this	connection	more	directly	in	the	future.		
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More	broadly,	I	aim	to	describe	the	functional	relationships	between	different	areas	in	MTL	with	
different	semantic	areas.	I	predict	that	specializations	among	MTL	areas	for	encoding	new	
experiences	will	be	related	to	the	functional	specializations	in	the	semantic	areas	with	which	they	
are	connected.	For	example,	antero-lateral	entorhinal	cortex	is	especially	important	for	learning	
temporally	predictive	information,	and	for	that	reason,	may	serve	to	update	semantic	knowledge	
regarding	causal	models	of	actions	and	events.	Other	MTL	sites	are	known	to	specialize	in	spatial	
relations,	feature	binding,	and	familiarity.	I	predict	that	the	specific	roles	of	these	areas	in	encoding	
new	experiences	will	predict	to	which	semantic	areas	they	connect	to,	and	that	information	in	those	
MTL	sites	serves	as	inputs	to	their	acquisition	of	semantic	knowledge.		
	
Acquisition	of	relational	knowledge	from	observation						
	
Past	Work	
	
Accounts	of	how	we	build	semantic	knowledge	must	explain	how	operations	over	observed	
experience	produce	abstract,	relational	structure.	Although	the	human	mind	can	learn	structures	of	
great	complexity	when	directed	to	do	so,	it	is	a	separate	question	what	kinds	of	structure	it	
endogenously	and	spontaneously	computes	as	it	observes	events—which	is	critical	for	
understanding	naturalistic	knowledge	acquisition.		
	
In	this	line	of	work,	I	have	found	that	participants	spontaneously	encoded	how	several	predictive	
relationships	hang	together,	i.e.,	relations	among	relations,	even	when	that	led	to	errors.	Relational	
sets	matter	greatly	for	semantic	knowledge;	for	example,	we	know	that	plants	wilt	if	not	watered,	
and	grow	if	planted	in	soil.	If	we	observe	one	of	those	relations	of	a	new	object,	we	may	expect	the	
other.	This	goes	above	and	beyond	expecting	a	certain	event	to	take	place;	we	expect	growth	
specifically	to	depend	on	soil,	having	observed	wilting	depending	on	not-watering.	I	showed	that	
participants	have	this	kind	of	expectation	with	newly	learned	relations	among	artificial	stimuli,	
leading	them	to	make	inadvertent	errors	when	relational	sets	are		violated	(Leshinskaya,	Bajaj,	&	
Thompson-Schill,	2020).	This	suggests	that	our	spontaneous	model-building	mechanisms	bind	
relations	to	other	relations,	and	this	inferential	step	takes	place	automatically.	This	could	serve	as	
one	mechanism	behind	the	coherent,	theory-like	nature	of	conceptual	knowledge.	
	
I	have	also	explored	the	continuity	between	incidental	memory	formation	and	principles	of	causal	
reasoning.	It	is	well	established	that	upon	repeated	but	incidental	exposure	to	paired	stimuli,	e.g.,	A	
followed	by	B,	we	come	to	associate	those	stimuli	in	memory.	It	is	often	assumed	that	recalling	this	
relation	is	a	function	of	the	conditional	probability	between	A	and	B.	However,	a	foundational	
principle	governing	more	explicit	reasoning	and	learning	is	that	participants	are	sensitive	not	to	
conditional	probability	per	se,	but	whether	relations	are	confounded	(Cheng,	1997).	For	example,	
suppose	that	you	observe	that	the	conditional	probability	of	rain	given	thunder	is	high.	However,	
rain	also	appears	without	thunder	equally	often.	In	this	case,	you	would	not	judge	that	thunder	
causes	the	rain.	In	most	tasks,	participants	are	assumed	to	(and	often	demonstrably	do)	recall	that	
they	saw	thunder	and	rain	together	but	have	concluded	this	relationship	is	not	significant	in	light	of	
other	evidence.	I	showed	that	such	confounding	principles	also	influence	what	is	actually	recalled	
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(Leshinskaya	&	Thompson-Schill,	2018;	in	revision).	Participants	failed	to	recall	that	they	saw	(e.g.)	
thunder	and	rain	together	at	all	when	that	relationship	was	confounded,	demonstrating	that	this	
causal	principle	is	embedded	in	how	we	update	our	memory.	This	has	implications	for	the	
sophistication	of	computational	models	that	are	required	to	account	for	relational	memory	
formation,	requiring	at	minimum	the	capacity	for	retrospective	revaluation	(Kruschke,	2008).	
Altogether,	this	work	characterizes	the	complex	learning	algorithms	that	operate	in	the	background	
of	our	minds	to	build	sophisticated	models	of	the	world	and	in	turn	shape	the	contents	of	long-term	
memory.	
	
Current	&	Future	Work	
	
The	neural	mechanisms	supporting	our	ability	to	encode	and	recall	new	relational	knowledge	have	
been	increasingly	well	documented.	However,	a	computational	account	of	how	neural	relational	
memories	form,	or	what	they	reflect	about	observed	experience,	is	still	open.	I	lead	an	NSF-funded	
project	that	seeks	to	understand	the	computational	principles	by	which	neural	relational	memory	
forms	in	MTL	sites.	Closing	this	gap	would	offer	great	unification	between	our	understanding	of	the	
computational	principles	of	learning	and	the	neural	systems	for	acquiring	knowledge.		
	
Surprisingly,	it	is	largely	assumed	that	events	become	neurally	associated	to	the	extent	that	they	
simply	co-occur.	However,	there	are	radically	different	principles	that	could	guide	relational	
memory.	Building	on	my	work	on	principles	of	de-confounding	in	memory	formation,	I	am	
currently	investigating	whether	more	causal	principles,	rather	than	simple	co-occurrence,	guide	the	
formation	of	neural	representations	of	predictive	relations	(in	the	medial	temporal	lobe	and	
elsewhere).	Next,	I	plan	to	compare	models	capturing	the	principle	of	de-confounding	to	alternative	
models	from	causal	learning	and	reinforcement	learning,	which	each	capture	other	algorithmic	
principles:	temporal	extension,	as	predicted	by	temporal	difference	style	models	(Russek,	
Momennejad,	Botvinick,	Gershman,	&	Daw,	2017)	and	representation	of	explicit	causal	structure	as	
predicted	by	Bayesian	casual	learning	models	(Griffiths	&	Tenenbaum,	2009).	By	putting	these	
models	on	common	ground	and	carefully	manipulating	the	nature	of	statistical	evidence	presented	
to	participants,	I	will	be	able	to	ask	whether	different	MTL	areas	adhere	to	one	or	another	of	these	
learning	principles	as	they	encode	relational	experience.	I	expect	that	plasticity	in	different	sites	
will	follow	distinct	learning	algorithms	and	this	will	be	highly	illuminating	to	the	how	the	brain	
acquires	predictive	knowledge.	This	work	is	only	the	beginning	of	a	much	larger	research	program.			
	
In	future	work	(currently	submitted	as	an	NIH	R21	application),	I	also	aim	to	tackle	one	of	the	most	
challenging	questions	in	relational	memory:	the	question	of	how	we	understand	the	structure	and	
type	of	relations	among	entities.	Memory	research	has	long	tracked	the	neural	signatures	of	
recalling	whether	entities	are	related,	but	it	is	not	known	how	the	brain	encodes	how	they	are	
related.	For	example,	we	recall	not	just	daffodils,	Mary,	and	a	vase,	but	that	Mary	gave	us	the	
daffodils	and	we	put	them	in	a	vase.	How	does	the	brain	encode	such	structure,	allowing	for	
relations	to	be	re-useable	across	situations	and	flexibly	bound	to	new	fillers?	I	aim	to	test	two	broad	
hypotheses	that	are	based	on	established	solutions	in	artificial	computational	systems	but	have	
never	been	compared	as	accounts	of	biological	brains.	According	to	relational	modularity	or	
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‘register’	models,	spatially	separate	neural	populations	are	devoted	to	representing	a	relation	of	a	
particular	kind	and	activation	patterns	in	those	areas	identify	the	entities	in	that	relation.	According	
to	multiplicative	binding,	or	tensor	product	models,	entities	and	relation	types	are	all	encoded	as	
distributed	patterns	of	activity	and	their	combination	is	represented	as	a	multiplicative	function	of	
the	distributed	activity	patterns	of	the	components.	These	ideas	can	be	tested	using	well-
established	measures	of	relational	memory	strength,	but	asking	whether	relational	type	influences	
either	the	cortical	location	or	the	distributed	neural	pattern	of	these	signatures,	and	directly	
evaluating	whether	the	neural	response	to	a	particular	relational	combination	is	a	multiplicative	
product	of	the	neural	response	patterns	to	its	components.		
	
Summary		
	
In	summary,	my	research	is	guided	by	the	notion	that	understanding	the	nature	of	semantic	
memory	requires	an	understanding	of	how	it	is	built	from	experience.	My	prior	work	has	
characterized	some	of	the	learning	processes	that	operate	in	the	background	of	our	minds	to	build	
sophisticated	models	of	the	world	and	in	turn	shape	the	contents	of	long-term	memory.	This	has	led	
to	a	line	of	inquiry	probing	the	specializations	among	knowledge	acquisition	pathways,	including	
the	learning	algorithms	guiding	memory	formation.	I	seek	to	test	the	notion	that	specializations	in	
terms	of	domains,	relational	type,	and	learning	algorithms	go	hand	in	hand	in	explaining	the	
specializations	in	areas	and	interactions	among	them.	I	expect	these	questions	to	guide	a	long	and	
fruitful	research	program.	
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